检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学院软件研究所基础软件国家工程研究中心,北京100190 [2]中国科学院大学,北京100190
出 处:《计算机系统应用》2015年第3期44-49,共6页Computer Systems & Applications
基 金:国家自然科学基金(61100067)
摘 要:迭代式计算是一类重要的大数据分析应用.在分布式计算框架MapReduce上实现迭代计算时,计算会被分解成多个作业并按作业依存关系顺序运行,这使得程序与分布式文件系统(DFS)有多次交互而影响程序执行时间.对这些交互相关数据的缓存会降低与DFS的交互时间,进而提升程序总体的性能.考虑到集群中的大量内存在多数情况下会处于空闲状态,提出了一种使用内存缓存的迭代式应用编程框架MemLoop.该系统从作业提交API、调度算法、缓存管理模块实现缓存管理以充分利用内存缓存迭代间可驻留数据与迭代内依存数据.我们将此框架与已有相关框架进行了比较,实验结果表明该框架能够提升迭代程序的性能.The iterative computation is an important big data analysis application. While implementing iterative computation on the distributed computation framework Map Reduce, the iterative program will be divided into more than one jobs which run in the order defined by the dependencies between jobs, which lead to many interactions between the program and distributed file system(DFS) that will affect the program's execution time. Caching these interaction-related data will reduce the time of interactions between the program and DFS and hence improve the overall performance of application. Considering that large amount of memory in cluster nodes is unused at most time, this paper proposes a programming framework called Mem Loop using memory cache for iterative application. This system sufficiently uses the free memory in the cluster's nodes to cache data by implementing the memory caching management from three models: job submit API, task scheduling algorithm, cache management. The cached data is classified into two categories: inter-iteration resident data and intra-iteration dependent data. We compare this framework with previous related framework. The result shows that Mem Loop can improve the performance of iterative program.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249