检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Department of Mathematics, and MOE-LSC, Shanghai Jiao Tong University
出 处:《Acta Mathematica Scientia》2015年第1期1-44,共44页数学物理学报(B辑英文版)
基 金:supported by NNSF of China(10971134,11031001,91230102,11371250)
摘 要:In this paper, we are concerned with the local structural stability of one-dimensional shock waves in radiation hydrodynamics described by the isentropic Euler-Boltzmann equations. Even though in this radiation hydrodynamics model, the radiative effects can be understood as source terms to the isentropic Euler equations of hydrodynamics, in general the radiation field has singularities propagated in an angular domain issuing from the initial point across which the density is discontinuous. This is the major difficulty in the stability analysis of shocks. Under certain assumptions on the radiation parameters, we show there exists a local weak solution to the initial value problem of the one dimensional Euler-Boltzmann equations, in which the radiation intensity is continuous, while the density and velocity are piecewise Lipschitz continuous with a strong discontinuity representing the shock-front. The existence of such a solution indicates that shock waves are structurally stable, at least local in time, in radiation hydrodynamics.In this paper, we are concerned with the local structural stability of one-dimensional shock waves in radiation hydrodynamics described by the isentropic Euler-Boltzmann equations. Even though in this radiation hydrodynamics model, the radiative effects can be understood as source terms to the isentropic Euler equations of hydrodynamics, in general the radiation field has singularities propagated in an angular domain issuing from the initial point across which the density is discontinuous. This is the major difficulty in the stability analysis of shocks. Under certain assumptions on the radiation parameters, we show there exists a local weak solution to the initial value problem of the one dimensional Euler-Boltzmann equations, in which the radiation intensity is continuous, while the density and velocity are piecewise Lipschitz continuous with a strong discontinuity representing the shock-front. The existence of such a solution indicates that shock waves are structurally stable, at least local in time, in radiation hydrodynamics.
关 键 词:radiation hydrodynamics Euler-Boltzmann equations Riemann problems shock waves
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.137.214.24