Spatial and temporal variation characteristics of ocean waves in the South China Sea during the boreal winter  被引量:2

Spatial and temporal variation characteristics of ocean waves in the South China Sea during the boreal winter

在线阅读下载全文

作  者:ZHU Geli LIN Wantao ZHAO Sen CAO Yanhua 

机构地区:[1]State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics,Chinese Academy of Sciences [2]Department of Mathematics and Physics,North China Electric Power University [3]University of Chinese Academy of Sciences

出  处:《Acta Oceanologica Sinica》2015年第1期23-28,共6页海洋学报(英文版)

基  金:The National Basic Research Program(973 Program) of China under contract No.2011CB403501

摘  要:The spatial and temporal variation characteristics of the waves in the South China Sea (SCS) in the boreal winter during the period of 1979/1980-2011/2012 have been investigated based on the European Centre for Medium-range Weather Forecasts interim (ERA-Interim) reanalysis dataset. The results show that the lead- ing mode of significant wave height anomalies (SWHA) in the SCS exhibits significant interannual variation and a decadal shift around the mid-1990s, and features a basin-wide pattern in the entire SCS with a center located in the west of the Luzon Strait. The decadal change from a weak regime to a strong regime is mainly associated with the enhancement of winter monsoon modulated by the Pacific decadal oscillation (PDO). The interannual variation of the SWHA has a significant negative correlation with the E1 Nino Southern Oscillation (ENSO) in the same season and the preceding autumn. For a better understanding of the physi- cal mechanism between the SCS ocean waves and ENSO, further investigation is made by analyzing atmo- spheric circulation. The impact of the ENSO on the SWHA over the SCS is bridged by the East Asian winter monsoon and Pacific-East Asian teleconnection in the lower troposphere. During the E1 Nino (La Nino), the anomalous Philippine Sea anticyclone (cyclone) dominates over the Western North Pacific, helps to weaken (enhance) East Asian winter monsoon and then emerges the negative (positive) SWHA in the SCS.The spatial and temporal variation characteristics of the waves in the South China Sea (SCS) in the boreal winter during the period of 1979/1980-2011/2012 have been investigated based on the European Centre for Medium-range Weather Forecasts interim (ERA-Interim) reanalysis dataset. The results show that the lead- ing mode of significant wave height anomalies (SWHA) in the SCS exhibits significant interannual variation and a decadal shift around the mid-1990s, and features a basin-wide pattern in the entire SCS with a center located in the west of the Luzon Strait. The decadal change from a weak regime to a strong regime is mainly associated with the enhancement of winter monsoon modulated by the Pacific decadal oscillation (PDO). The interannual variation of the SWHA has a significant negative correlation with the E1 Nino Southern Oscillation (ENSO) in the same season and the preceding autumn. For a better understanding of the physi- cal mechanism between the SCS ocean waves and ENSO, further investigation is made by analyzing atmo- spheric circulation. The impact of the ENSO on the SWHA over the SCS is bridged by the East Asian winter monsoon and Pacific-East Asian teleconnection in the lower troposphere. During the E1 Nino (La Nino), the anomalous Philippine Sea anticyclone (cyclone) dominates over the Western North Pacific, helps to weaken (enhance) East Asian winter monsoon and then emerges the negative (positive) SWHA in the SCS.

关 键 词:ocean waves interannual variability South China Sea ENSO PDO 

分 类 号:P731.2[天文地球—海洋科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象