Experimental and numerical investigation of failure mode in geometrically imperfect DP590 steel  

Experimental and numerical investigation of failure mode in geometrically imperfect DP590 steel

在线阅读下载全文

作  者:ZHUANG XinCun XU Cheng ZHAO Zhen 

机构地区:[1]Institute of Forming Technology & Equipment, School of Materials Science and Engineering, Shanghai Jiaotong University

出  处:《Science China(Technological Sciences)》2015年第3期476-484,共9页中国科学(技术科学英文版)

基  金:supported by the National Natural Science Foundation of China(Grant No.51105250)

摘  要:Various microstructure-level finite element models were generated according to the real microstructure of DP590 steel to capture the mechanical behavior and fracture mode.The failure mode of the dual-phase(DP)steels,mainly resulting from microstructure-level inhomogeneity and initial geometrical imperfection,was predicted using the plastic strain localization theory.In addition,dog-bone-type tensile test specimens with different edge qualities were prepared and the deformation processes were recorded using a digital image correlation system.When the steel exhibited no initial geometrical imperfection,void initiation was triggered by decohesion between martensite and ferrite which was predicted based on the severe strain concentration,or tensile stress in areas where stress triaxiality and strain values were high.Final failure was caused by shear localization in the vicinity.Moreover,the initial geometrical imperfections severely affected the overall ductility and failure mode of the DP590steel.When initial geometrical imperfections were deeply ingrained,an incipient crack began at the site of initial geometrical imperfection,and then caused progressive damage throughout the microstructure,from the area of shear localization to the final fracture.Overall,the depth of the geometrical imperfection was the critical factor in determining whether internal decohesion or a local crack plays a dominant role.

关 键 词:representative volume element dual-phase(DP) steel geometrical imperfection failure mode 

分 类 号:TG142.1[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象