检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]廊坊职业技术学院,河北廊坊065000 [2]河北工业大学廊坊分校,河北廊坊065000
出 处:《计算机应用与软件》2015年第2期249-254,260,共7页Computer Applications and Software
基 金:河北省教育厅教学改革立项支持项目(103004);教育部高职委项目(jzw590111050)
摘 要:基于异构云联合的并行化大数据分析服务可以提升性能。然而由于大数据网络传输存在较大时延,原则上必须在并行化水平和大数据分析性能之间进行折衷。鉴于此,提出一种启发式云爆发算法用于并行化大数据分析服务。首先确定联合云中哪些计算结点应该用于大数据分析并行处理,然后将大数据妥善地分配给这些计算结点,确保处理同步完成且性能最优,最后,确定被分配的不同大小数据块在各个结点的计算次序,确保数据块传输尽量在结点上一数据块计算期间完成。与其他负载均衡算法做了对比,结果表明,使用该算法后性能可提升20%~60%。Parallelisation big-data analytics services over a federation of heterogeneous clouds are considered to improve the performance. However, principally there is an inherent trade-off between the level of parallelisation and the performance of big-data analytics because a quite significant delay exists when the big-data is transmitted over the network. In view of this, we propose a heuristic cloud bursting algorithm and apply it to parallelisation big-data analytics services. First, the algorithm determines which computing nodes in federated clouds should be used for parallel processing of the big-data analytics ; then it appropriately allocates the big-data to these computing nodes for ensuring the completion of the synchronised processing with best performance; finally, it determines the computation sequence of the allocated big-data chunks with different sizes in each node, so as to guarantee the transmission of a data chunk is to be completed within the computation period of its previous chunk in the node as much as possible. We have compared our algorithm with other load-balancing schemes. Result shows that by using this algorithm the performance can be improved by 20% and up to 60% against other approaches.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.233