检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]水利部国际合作与科技司,北京100053 [2]Georgia Institute of Technology, 10010th St.NWAPT 505, ATL, GA 30332 [3]中国农业大学水利与土木工程学院,北京100083
出 处:《灌溉排水学报》2015年第2期1-6,共6页Journal of Irrigation and Drainage
基 金:公益性行业科研专项经费项目(201401078)
摘 要:为准确估算气象资料短缺地区参考作物腾发量,构建了一种基于HHT变换的PSO-LSSVM耦合模型,并利用新疆和田气象站2000—2009年单日数据做训练、双日数据做验证。结果表明,该模型估算ET0方法明显优于常规的PSO-LSSVM和GRNN,预测精度较二者分别提高了15.7%~85.6%和15.8%~93.7%;该方法预测ET0的气象要素重要性为Rs〉Tmax〉Tmin〉RH〉Wn,利用该方法对气象要素组合为Tmax/Tmin/RH/Wn、Tmax/RH/Wn、Tmin/Wn、Wn条件下的ET0预测,MSE分别为0.407、0.185、0.149、0.135,说明该方法可以很好地估算资料缺失地区ET0。In order to accurate estimation of reference crop evapotranspiration in area where could not get required meteorological elements,a coupling model of PSO-LSSVM was established based on HHT transform,and Chinese Hetian Xinjiang meteorological station daily data of 2000—2009were used for training,double-day data for validation.The results showed that:both single factor and multiple factors after HHT transformation for PSO-LSSVM prediction results had significantly higher accuracy rates than that of PSOLSSVM and the GRNN prediction.The prediction accuracy was improved by 15.7%-85.6%,15.8%-93.7%respectively;and the importance of prediction elements was:Rs〉Tmax〉Tmin〉RH〉Wn.When the deletion combination was Tmax/Tmin/RH/Wn,Tmax/RH/Wn,Tmin/Wnand Wn,the MSE was 0.407,0.185,0.149,0.135 respectively,which showed that this method was a good estimation method for ET0 in data shortage area.
关 键 词:参考作物腾发量 HHT变换 PSO-LSSVM 预测模型
分 类 号:S161.4[农业科学—农业气象学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117