检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南昌航空大学数学与信息科学学院,南昌330063
出 处:《动力学与控制学报》2015年第1期42-47,共6页Journal of Dynamics and Control
基 金:国家自然科学基金资助项目(11102078;61104220);江西省教育厅资助项目(GJJ1169)~~
摘 要:含van der Pol型自激项的单摆系统是典型的自激机械系统,本文研究了该系统的张弛振荡特性.首先通过引入新的时间尺度和变量,把原系统表示成标准的快慢系统.然后基于几何奇异摄动理论,求得系统的慢变流形及其结构,从而证明了张弛振荡解的存在性,并进一步求得了张弛振荡解及其周期的近似表达式.理论结果表明,发生张弛振荡时,单摆快速通过其平衡位置,而在远离平衡位置的一段区域上停留较长时间,且存在两个分界点把快速运动和慢速运动分隔开.数值算例证明了理论分析的正确性.The pendulum system with van der Pol type self-excitation is one typical self-excited mechanic system,and this paper studied the relaxation oscillation of the pendulum system. Firstly,the new time-scale and variable were introduced,so the pendulum system was described with standard slow-fast system. And then,on the basis of the geometric singular perturbation theory,the slow manifold and its structure of the system were obtained,and the relaxation oscillation was proved. Moreover,the expression of the relaxation oscillation and its period were obtained approximately. The analytical results indicate that,when the system undergoes relaxation oscillation,the pendulum passes through equilibrium position rapidly,and stays in the regions far away from the equilibrium position for a long time,and there are two break points which separate the fast dynamics from the slow dynamics. Numerical studies validate the analytical results.
关 键 词:自激单摆 张弛振荡 奇异摄动 慢变流形 快慢系统
分 类 号:O314[理学—一般力学与力学基础]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.232