Bifurcation behavior and coexisting motions in a time-delayed power system  被引量:4

Bifurcation behavior and coexisting motions in a time-delayed power system

在线阅读下载全文

作  者:马美玲 闵富红 

机构地区:[1]School of Electrical and Automation Engineering

出  处:《Chinese Physics B》2015年第3期78-86,共9页中国物理B(英文版)

基  金:supported by the National Natural Science Foundation of China(Grant Nos.51475246 and 51075215);the Natural Science Foundation of Jiangsu Province of China(Grant No.Bk20131402);the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry of China(Grand No.[2012]1707)

摘  要:With the increase of system scale, time delays have become unavoidable in nonlinear power systems, which add the complexity of system dynamics and induce chaotic oscillation and even voltage collapse events. In this paper, coexisting phenomenon in a fourth-order time-delayed power system is investigated for the first time with different initial conditions.With the mechanical power, generator damping factor, exciter gain, and time delay varying, the specific characteristic of the time-delayed system, including a discontinuous "jump" bifurcation behavior is analyzed by bifurcation diagrams, phase portraits, Poincar′e maps, and power spectrums. Moreover, the coexistence of two different periodic orbits and chaotic attractors with periodic orbits are observed in the power system, respectively. The production condition and existent domain of the coexistence phenomenon are helpful to avoid undesirable behavior in time-delayed power systems.With the increase of system scale, time delays have become unavoidable in nonlinear power systems, which add the complexity of system dynamics and induce chaotic oscillation and even voltage collapse events. In this paper, coexisting phenomenon in a fourth-order time-delayed power system is investigated for the first time with different initial conditions.With the mechanical power, generator damping factor, exciter gain, and time delay varying, the specific characteristic of the time-delayed system, including a discontinuous "jump" bifurcation behavior is analyzed by bifurcation diagrams, phase portraits, Poincar′e maps, and power spectrums. Moreover, the coexistence of two different periodic orbits and chaotic attractors with periodic orbits are observed in the power system, respectively. The production condition and existent domain of the coexistence phenomenon are helpful to avoid undesirable behavior in time-delayed power systems.

关 键 词:chaotic oscillation time delays bifurcation diagrams coexisting motions 

分 类 号:TM712[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象