检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:汪定伟[1]
出 处:《系统管理学报》2014年第4期524-528,共5页Journal of Systems & Management
基 金:国家自然科学基金重点项目(70931001);面上项目(61273203)
摘 要:政府与大型企业集团的集中采购和大型工程项目的招标常采用网上逆向组合拍卖的方式进行,而为确保投标的竞争性必须有足够的投标人数。在文献中的组合拍卖的获胜组合数量的计算方法的基础上,推导了单次出价平均可行解数量的计算公式,提出并证明了关于可行解数量的2个基本定理。即可行解数随投标人数的增加而增加,随标的物数量的增加而减少。按上述方法计算了不同规模组合拍卖问题的单次出价的可行解的均值,给出了对于不同数量标的物的逆向组合拍卖确保竞争性的必要投标人数。The reverse combinatorial auctions are widely applied to the centralized procurements and project tenders of governments and enterprise groups.To guarantee the competition of reverse auctions,an enough number of bidders is necessary.Based on the computational method for the number of winners in combinatorial auctions,we devise the formula to calculate the average number of bidders in a single bidding.Two theorems on the feasible solution numbers were developed and proved.They indicate that the feasible solution numbers increase with the increase of bidder number,and decrease with the increase of object number.By means of proposed computing approach,the average feasible solution numbers of the problems with different sizes are obtained.The results present the minimal bidder numbers to guarantee proper competition.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222