机构地区:[1]National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukubalshi, Ibaraki-ken 305-0047, Japan [2]Chemistry Department, Faculty of Science, Sohag University,Egypt [3]Graduate School for Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
出 处:《Journal of Energy Chemistry》2015年第1期31-38,共8页能源化学(英文版)
摘 要:Immobilizing biocomponents on solid surfaces is a critical step in the development of new devices for future biological, medical, and elec- tronic applications. Therefore, numerous integrated films were recently developed by immobilizing different proteins or enzymes on electrode surfaces. In this work, hemeproteins were safely immobilized onto macroporous nickel-based electrodes while maintaining their functionality. Such modified electrodes showed interesting pseudo-capacitive behavior. Among hemeproteins, hemoglobin (Hb) film has a higher electro- chemical performance and greater charge/discharge cycling stability than myoglobin (Mb) and cytochrome C (CytC). The heme group in an alkaline medium could induce the formation of superoxides on the electrode surface. These capacitive features of hemeprotein-Ni electrode were related to strong binding sites between hemeproteins and porous Ni electrode, the accumulation of superoxide or radicals on the Ni sur- face, and facile electron transfer and electrolyte diffusion through the three-dimensional macroporous network. Thus, these new protein-based supercapacitors have potential use in free-standing platform technology for the development of implantable energy-storage devices.Immobilizing biocomponents on solid surfaces is a critical step in the development of new devices for future biological, medical, and elec- tronic applications. Therefore, numerous integrated films were recently developed by immobilizing different proteins or enzymes on electrode surfaces. In this work, hemeproteins were safely immobilized onto macroporous nickel-based electrodes while maintaining their functionality. Such modified electrodes showed interesting pseudo-capacitive behavior. Among hemeproteins, hemoglobin (Hb) film has a higher electro- chemical performance and greater charge/discharge cycling stability than myoglobin (Mb) and cytochrome C (CytC). The heme group in an alkaline medium could induce the formation of superoxides on the electrode surface. These capacitive features of hemeprotein-Ni electrode were related to strong binding sites between hemeproteins and porous Ni electrode, the accumulation of superoxide or radicals on the Ni sur- face, and facile electron transfer and electrolyte diffusion through the three-dimensional macroporous network. Thus, these new protein-based supercapacitors have potential use in free-standing platform technology for the development of implantable energy-storage devices.
关 键 词:whemeprotein nickel foam PSEUDOCAPACITOR MACROPOROUS PEROXIDE alkaline medium
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...