基于多权值神经网络的老人跌倒智能识别研究  被引量:7

Research on the Intelligent Recognition of Falling of Aged People Based on Multi-weights Neural Network

在线阅读下载全文

作  者:羌予践[1] 华亮[1] 陈玲[1] 顾菊平[1] 沈煜[1] 

机构地区:[1]南通大学电气工程学院,南通226019

出  处:《科学技术与工程》2015年第4期119-124,130,共7页Science Technology and Engineering

基  金:国家自然科学基金(61273024;61305031);江苏省自然科学基金(KB2012227);江苏省高校自然科学基金(12KJB510023)资助

摘  要:随着我国人口老龄化及对延年益寿的期望加剧,老年人的健康问题受到广泛的关注。针对这一社会问题,建立人体跌倒模型,并对三轴加速度传感器采集来的不同人体跌倒姿态的高维数据做主成分分析(PCA),降维处理使其特征投影到低维空间,再将降维后的特征向量借助多权值神经元网络算法识别人体跌倒姿态。最后,实际采样的人体跌倒姿态数据验证了该方法的有效性。此外,与支撑向量机(SVM)算法相比较,实验结果表明,多权值神经元网络比支撑向量机算法在人体跌倒应用中更加具有优越性。With our aging population and the increased expectations of longevity,the health problems of the elderly have widely attracted attention. In response to this social problem,the model of falls was created. The principal component analysis( PCA) was used to obtain the principal components of high-dimensional data from different body posture collected by three-axis accelerometer. Dimension-reduced processing makes features project onto low-dimensional space. Further,feature vectors from dimension reduction are utilized to train multi-weights neural network( MWNN) to identify the falling body posture. Finally,actual sampling data of the falling body posture have verified the validity of the method. In addition,simulation results also indicate that MWNN utilized in this paper is more excellent than support vector machine( SVM) in the application of falling of aged people.

关 键 词:老人跌倒 多权值神经元网络 主成分分析 智能识别 

分 类 号:TP274[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象