检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:汪洋[1] 张华年[1] 徐华[1] 陈渝军[1] 刘茂昌[1]
出 处:《中国新药与临床杂志》2015年第2期137-143,共7页Chinese Journal of New Drugs and Clinical Remedies
基 金:武汉市科技攻关计划(2013060602010258)
摘 要:目的建立人工神经网络模型用于估算耐甲氧西林葡萄球菌(MRS)感染患儿万古霉素稳态血药浓度,以指导个体化给药。方法收集100例MRS感染患儿静脉泵注万古霉素后的180例次稳态血药浓度数据和临床资料。将所有血药浓度数据和病例资料随机分成两组,训练组(n=150)采用遗传算法配合动量法训练后建立人工神经网络模型,另外建立多元线性回归模型;测试组(n=30)用建立的人工神经网络预测测试组患儿的血药浓度,通过计算平均预测误差(MPE)、权重残差(WRES)、平均绝对预测误差(MAE)、平均预测误差平方(MSE)和均方根预测误差(RMSE)来验证模型。结果人工神经网络MPE(0.33±1.86)mg·L-1,WRES(14.83±14.55)%,MAE(1.38±1.26)mg·L-1,MSE(3.45±5.32)(mg·L-1)2,RMSE 1.86 mg·L-1;人工神经网络模型有83%的血药浓度数据绝对预测误差<3.0 mg·L-1,而多元线性回归模型仅有53%。人工神经网络预测的准确度及精密度均优于多元线性回归模型。结论本研究建立的人工神经网络预测性能较好,可用于预测MRS感染患儿万古霉素稳态血药浓度以指导个体化给药。AIM To establish an artificial neural network (ANN) for predicting vancomycin concen- trations in children with methicillin-resistant Staphylococcus (MRS) infections and optimize the individual use of vancomycin. METHODS Totally 180 cases of steady state plasma concentration data were collected from 100 MRS- infected children with intravenous infusion of vancomycin in this study. All the concentrations and data were divided into two groups randomly. In the training group (n =150), ANN was established after the network parameters were trained by using momentum method combined with genetic algorithm, and multiple linear regression (MLR) model was established. In the testing group (n = 30), the concentrations of the testing group patients were predicted by ANN established, and the mean predicted error (MPE), weighted residuals (WRES), mean absolute prediction error (MAE), mean squared prediction error (MSE), root mean squared prediction error (RMSE) were calculated to assess the ANN model. RESULTS The assessed results of ANN were MPE (0.33±1.86) mg·L-1, WRES (14.83 ±14.55) %, MAE (1.38 ± 1.26) mg·L-1, MSE (3.45 ± 5.32) (mg·L-1) 2, RMSE 1.86 mg·L-1, respectively. There were 83% of ANN test data sets whose absolute prediction errors were less than 3.0 mg·L-1, while the percent of MLR model was 53%. The accuracy and precision of ANN were superior to those of MLR with stepwise method. CONCLUSION The established ANN in this study is good enough to predict vancomycin concentration and optimize its individualization of dosage regimen in children with MRS infections.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3