检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机工程与应用》2015年第3期260-264,共5页Computer Engineering and Applications
基 金:河北省自然科学基金(No.E2012201002)
摘 要:针对现有单项预测模型提供信息有限,预测误差大的问题,引用最优加权组合建模理论,将灰色关联度与IOWHA算子相结合,提出一种新的组合预测模型权重确定方法,并应用该权重确定方法构建了一种基于RBF神经网络预测模型和GM预测模型的最优组合预测模型。该模型能够克服传统组合预测方法的两个缺陷:加权平均系数不变和以单一误差指标为准则。利用该组合模型对全国物流需求进行组合预测,并与RBF神经网络模型、GM模型的预测结果进行了对比分析。结果表明,相对于单项预测模型,该组合预测模型的预测精度更高,是一种有效的物流需求预测模型。To solve the problem of the limited information and the large errors using the single prediction model, a weights determination method of the combinatorial forecast model is proposed based on combining the degree of grey incidence and Induced Ordered Weighted Harmonic Averaging(IOWHA)operator and the optimal weighted theory. Using the weights determination method, an optimal combination forecasting model is proposed based on the RBF neural network model and the GM model. The model can overcome two deficiencies of traditional combination forecasting method in the invariable weighting and using single error index as the principle. In the paper, combination forecasting of the logistics demand of China is given by using this model which is compared with the forecasting result of the RBF neural network model and the GM model. The result shows that this combination forecasting model is more accurate, and is an effective logistics demand forecasting model.
关 键 词:组合预测 诱导有序加权调和平均(IOWHA)算子 灰色关联度 优性组合预测
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33