检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Liu Jun Li Kai Liu Weiqiang
机构地区:[1]Science and Technology on Scramjet Laboratory, National University of Defense Technology
出 处:《Chinese Journal of Aeronautics》2015年第1期57-65,共9页中国航空学报(英文版)
基 金:co-supported by the National Natural Science Foundation of China(No.51306204;Science Foundation of Hunan Province of China(No.13JJ2002)
摘 要:This paper focuses on the analysis of high-temperature effect on a conical waverider and it is a typical configuration of near space vehicles. Two different gas models are used in the numerical simulations, namely the thermochemical non-equilibrium and perfect gas models. The non-equilibrium flow simulations are conducted with the usage of the parallel non-equilibrium program developed by the authors while the perfect gas flow simulations are carried out with the commercial software Fluent. The non-equilibrium code is validated with experimental results and grid sensitivity analysis is performed as well. Then, numerical simulations of the flow around the conical waverider with the two gas models are conducted. In the results, differences in the flow structures as well as aerodynamic performances of the conical waverider are compared. It is found that the thermochemical non-equilibrium effect is significant mainly near the windward boundary layer at the tail of the waverider, and the non-equilibrium influence makes the pressure center move forward to about 0.57% of the whole craft's length at the altitude of 60 km.This paper focuses on the analysis of high-temperature effect on a conical waverider and it is a typical configuration of near space vehicles. Two different gas models are used in the numerical simulations, namely the thermochemical non-equilibrium and perfect gas models. The non-equilibrium flow simulations are conducted with the usage of the parallel non-equilibrium program developed by the authors while the perfect gas flow simulations are carried out with the commercial software Fluent. The non-equilibrium code is validated with experimental results and grid sensitivity analysis is performed as well. Then, numerical simulations of the flow around the conical waverider with the two gas models are conducted. In the results, differences in the flow structures as well as aerodynamic performances of the conical waverider are compared. It is found that the thermochemical non-equilibrium effect is significant mainly near the windward boundary layer at the tail of the waverider, and the non-equilibrium influence makes the pressure center move forward to about 0.57% of the whole craft's length at the altitude of 60 km.
关 键 词:perfect aerodynamic craft validated usage altitude symmetric length stand relaxation
分 类 号:V211[航空宇航科学与技术—航空宇航推进理论与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.16.149.93