Parallel algorithm and its convergence of spatial domain decomposition of discrete ordinates method for solving radiation heat transfer problem  

Parallel algorithm and its convergence of spatial domain decomposition of discrete ordinates method for solving radiation heat transfer problem

在线阅读下载全文

作  者:Wang Zhenhua He Zhihong Mu Lei Dong Shikui 

机构地区:[1]School of Energy Science and Engineering,Harbin Institute of Technology

出  处:《Chinese Journal of Aeronautics》2015年第1期77-85,共9页中国航空学报(英文版)

基  金:co-supported by the National Nature Science Foundation of China(No.51176039);the Ph.D.Programs Foundation of Ministry of Education of China(No.20102302110015)

摘  要:To improve the computational efficiency and hold calculation accuracy at the same time,we study the parallel computation for radiation heat transfer. In this paper, the discrete ordinates method(DOM) and the spatial domain decomposition parallelization(DDP) are combined by message passing interface(MPI) language. The DDP–DOM computation of the radiation heat transfer within the rectangular furnace is described. When the result of DDP–DOM along one-dimensional direction is compared with that along multi-dimensional directions, it is found that the result of the latter one has higher precision without considering the medium scattering. Meanwhile, an in-depth study of the convergence of DDP–DOM for radiation heat transfer is made. Analyzing the cause of the weak convergence, we relate the total number of iteration steps when the convergence is obtained to the number of sub-domains. When we decompose the spatial domain along one-,two- and three-dimensional directions, different linear relationships between the number of total iteration steps and the number of sub-domains will be possessed separately, then several equations are developed to show the relationships. Using the equations, some phenomena in DDP–DOM can be made clear easily. At the same time, the correctness of the equations is verified.To improve the computational efficiency and hold calculation accuracy at the same time,we study the parallel computation for radiation heat transfer. In this paper, the discrete ordinates method(DOM) and the spatial domain decomposition parallelization(DDP) are combined by message passing interface(MPI) language. The DDP–DOM computation of the radiation heat transfer within the rectangular furnace is described. When the result of DDP–DOM along one-dimensional direction is compared with that along multi-dimensional directions, it is found that the result of the latter one has higher precision without considering the medium scattering. Meanwhile, an in-depth study of the convergence of DDP–DOM for radiation heat transfer is made. Analyzing the cause of the weak convergence, we relate the total number of iteration steps when the convergence is obtained to the number of sub-domains. When we decompose the spatial domain along one-,two- and three-dimensional directions, different linear relationships between the number of total iteration steps and the number of sub-domains will be possessed separately, then several equations are developed to show the relationships. Using the equations, some phenomena in DDP–DOM can be made clear easily. At the same time, the correctness of the equations is verified.

关 键 词:iteration decompose steps processors directions verified latter partition rectangular split 

分 类 号:V231.1[航空宇航科学与技术—航空宇航推进理论与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象