检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]天津大学,天津300072
出 处:《电源技术》2015年第3期518-520,共3页Chinese Journal of Power Sources
摘 要:动态的实时估计锂离子电池荷电状态(state of charge,SOC)是锂离子电池管理系统研究的关键技术。针对扩展卡尔曼滤波(EKF)估计SOC误差大的不足,基于二阶RC等效电路模型,提出了一种基于迭代中心差分卡尔曼滤波(ICDKF)算法的磷酸铁锂电池SOC估计方法。利用Matlab进行了仿真,并与扩展卡尔曼滤波和中心差分卡尔曼滤波(CDKF)算法进行了效果对比,从仿真结果可以看出,该SOC算法有效地降低了估计误差,与EKF相比,具有更好的滤波估计精度。The real-timely estimation of the SOC(state of charge) was the key technology in Li-ion battery management system. To overcome the error of the SOC estimation of Extended Kalman filter(EKF), a new estimation method based on iterative Center Difference Kalman Filter(ICDKF) was applied to SOC estimation of Li-ion battery, based on the second-order RC equivalent circuit model. Experiments were made to compare the new filter with the EKF and Center Difference Kalman Filter(CDKF). The simulation results demonstrate that the using new filter algorithm ICDKF has higher filtering accuracy under the same conditions.
分 类 号:TM912[电气工程—电力电子与电力传动]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.89