基于KPCA和CIPSO-PNN的煤与瓦斯突出强度辨识模型  被引量:20

The Identification Model of Coal and Gas Outburst Intensity Based on KPCA and CIPSO-PNN

在线阅读下载全文

作  者:王雨虹[1] 付华[1] 张洋[2] 

机构地区:[1]辽宁工程技术大学电气与控制工程学院,辽宁葫芦岛125105 [2]辽宁工程技术大学电子与信息工程学院,辽宁葫芦岛125105

出  处:《传感技术学报》2015年第2期271-277,共7页Chinese Journal of Sensors and Actuators

基  金:国家自然科学基金项目(51274118)

摘  要:为了实现对煤与瓦斯突出强度等级的准确辨识,提出将核主成分分析(KPCA)和改进概率神经网络相结合,建立煤与瓦斯突出的强度辨识模型。根据煤层条件和生产条件,确定影响煤矿瓦斯突出的相关基础参数并对其进行测定,采用KPCA对该参数集进行降维处理,提取出可以表征煤与瓦斯突出的敏感参数作为辨识模型的输入值。利用混沌免疫粒子群算法(CIPSO)优化概率神经网络(PNN)的σ参数,以克服PNN中平滑参数σ单一而导致的分类错误,避免了人为因素的影响,提高辨识模型的精度。实例分析结果表明,相比BP、PNN、PSO-PNN等方法,该方法对煤与瓦斯突出强度进行辨识,结果更为准确。In order to achieve accurate identification for coal and gas outburst,a new algorithm based on Kernel Principal Components Analysis( KPCA) and Improved Probabilistic Neural Network is proposed. Based on different conditions of coal seam and operation,the original index parameters that affect coal and gas outburst are determined and dealt with dimension reduction by KPCA method. The chief factors representing coal and gas outburst are extracted and put into PNN for identification of coal and gas outburst. Aiming at the incorrect classification defect caused by single smoothing factor,Chaos Immune Particle Swarm Optimization( CIPSO) is adopted to optimize parameters of PNN,which avoids the influence of artificial factors and improves the identification accuracy of the model. The numerical analysis results show that the proposed method has better performance compared with BP,PNN and PSO-PNN approaches.

关 键 词:煤与瓦斯突出 强度辨识 核主成分分析 概率神经网络 混沌免疫粒子群 

分 类 号:TP212[自动化与计算机技术—检测技术与自动化装置] TP183[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象