A new physical unclonable function architecture  

A new physical unclonable function architecture

在线阅读下载全文

作  者:白创 邹雪城 戴葵 

机构地区:[1]School of Optical and Electronic Information, Huazhong University of Science and Technology

出  处:《Journal of Semiconductors》2015年第3期121-126,共6页半导体学报(英文版)

基  金:Project supported by the National Natural Science Foundation of China(No.61376031)

摘  要:This paper describes a new silicon physical unclonable function (PUF) architecture that can be fabri- cated on a standard CMOS process. Our proposed architecture is built using process sensors, difference amplifier, comparator, voting mechanism and diffusion algorithm circuit. Multiple identical process sensors are fabricated on the same chip. Due to manufacturing process variations, each sensor produces slightly different physical charac- teristic values that can be compared in order to create a digital identification for the chip. The diffusion algorithm circuit ensures further that the PUF based on the proposed architecture is able to effectively identify a population of ICs. We also improve the stability of PUF design with respect to temporary environmental variations like temperature and supply voltage with the introduction of difference amplifier and voting mechanism. The PUF built on the proposed architecture is fabricated in 0.18 μm CMOS technology. Experimental results show that the PUF has a good output statistical characteristic of uniform distribution and a high stability of 98.1% with respect to temperature variation from -40 to 100 ℃, and supply voltage variation from 1.7 to 1.9 V.This paper describes a new silicon physical unclonable function (PUF) architecture that can be fabri- cated on a standard CMOS process. Our proposed architecture is built using process sensors, difference amplifier, comparator, voting mechanism and diffusion algorithm circuit. Multiple identical process sensors are fabricated on the same chip. Due to manufacturing process variations, each sensor produces slightly different physical charac- teristic values that can be compared in order to create a digital identification for the chip. The diffusion algorithm circuit ensures further that the PUF based on the proposed architecture is able to effectively identify a population of ICs. We also improve the stability of PUF design with respect to temporary environmental variations like temperature and supply voltage with the introduction of difference amplifier and voting mechanism. The PUF built on the proposed architecture is fabricated in 0.18 μm CMOS technology. Experimental results show that the PUF has a good output statistical characteristic of uniform distribution and a high stability of 98.1% with respect to temperature variation from -40 to 100 ℃, and supply voltage variation from 1.7 to 1.9 V.

关 键 词:physical unclonable functions digital identification process sensors voting mechanism diffusion algorithm 

分 类 号:TN432[电子电信—微电子学与固体电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象