Ultralow specific on-resistance high voltage trench SOI LDMOS with enhanced RESURF effect  被引量:1

Ultralow specific on-resistance high voltage trench SOI LDMOS with enhanced RESURF effect

在线阅读下载全文

作  者:徐青 罗小蓉 周坤 田瑞超 魏杰 范远航 张波 

机构地区:[1]State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China

出  处:《Journal of Semiconductors》2015年第2期99-105,共7页半导体学报(英文版)

基  金:Project supported by the National Natural Science Foundation of China(Nos.61176069,61376079)

摘  要:A RESURF-enhanced high voltage SOl LDMOS (ER-LDMOS) with an ultralow specific on-resistance (Ron, sp) is proposed. The device features an oxide trench in the drift region, a P-pillar at the sidewall of the trench, and a buried P-layer (BPL) under the trench. First, the P-pillar adjacent to the P-body not only acts as a vertical junction termination extension (JTE), but also forms a vertical reduced surface field (RESURF) structure with the N- drift region. Both of them optimize the bulk electric field distributions and increase the doping concentration of the drift region. Second, the BPL together with the N-drift region and the buried oxide layer (BOX) exhibits a triple- RESURF effect, which further improves the bulk field distributions and the doping concentration. Additionally, multiple-directional depletion is induced owing to the P-pillar, the BPL, and two MIS-like structures consisting of the N-drift region combined with the oxide trench and the BOX. As a result, a significantly enhanced-RESURF effect is achieved, leading to a high breakdown voltage (BV) and a low Ron, sp. Moreover, the oxide trench folds the drift region in the vertical direction, resulting in a reduced cell pitch and thus Ron, sp. Simulated results show that the ER-LDMOS improves BV by 67% and reduces Ron, sp by 91% compared with the conventional trench LDMOS at the same cell pitch.A RESURF-enhanced high voltage SOl LDMOS (ER-LDMOS) with an ultralow specific on-resistance (Ron, sp) is proposed. The device features an oxide trench in the drift region, a P-pillar at the sidewall of the trench, and a buried P-layer (BPL) under the trench. First, the P-pillar adjacent to the P-body not only acts as a vertical junction termination extension (JTE), but also forms a vertical reduced surface field (RESURF) structure with the N- drift region. Both of them optimize the bulk electric field distributions and increase the doping concentration of the drift region. Second, the BPL together with the N-drift region and the buried oxide layer (BOX) exhibits a triple- RESURF effect, which further improves the bulk field distributions and the doping concentration. Additionally, multiple-directional depletion is induced owing to the P-pillar, the BPL, and two MIS-like structures consisting of the N-drift region combined with the oxide trench and the BOX. As a result, a significantly enhanced-RESURF effect is achieved, leading to a high breakdown voltage (BV) and a low Ron, sp. Moreover, the oxide trench folds the drift region in the vertical direction, resulting in a reduced cell pitch and thus Ron, sp. Simulated results show that the ER-LDMOS improves BV by 67% and reduces Ron, sp by 91% compared with the conventional trench LDMOS at the same cell pitch.

关 键 词:RESURF-enhanced multiple-directional depletion effect silicon-on-insulator breakdown voltage specific on-resistance 

分 类 号:TN386[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象