基于图形电磁学雷达散射截面计算方法之改进  被引量:1

Improvement of Radar Cross Section Computing Method Based on GRECO

在线阅读下载全文

作  者:崔俊伟[1] 杨飏[1] 

机构地区:[1]大连理工大学船舶工程学院,辽宁大连116024

出  处:《电子学报》2014年第12期2409-2414,共6页Acta Electronica Sinica

基  金:国家自然科学基金(No.51079027)

摘  要:图形电磁学(GRaphical Electromagnetic COmputing,GRECO)利用图形加速卡和Z-Buffer技术可较为有效地解决传统电磁计算方法中存在的消隐困难和非可视化难题,是求解高频电大尺寸目标特性最有效的方法之一.但传统GRECO算法存在着无法精确提取目标法矢信息、计算精度依赖屏幕分辨率和多次反射计算困难等缺点,限制了这种方法的使用.本文针对GRECO方法就精确提取像素几何信息方法进行了简要改进,将其与基于帧缓存对象(FrameBuffer Object,FBO)的离屏渲染技术相结合,提出了改进的GRECO算法,克服了传统GRECO算法无法精确提取像素法矢信息和计算精度依赖屏幕分辨率的缺点.进而,采用AP/PO(Area Projection/Physical Optics)法,并对传统的多次散射面元对判别方法进行了适当改进,实现了对产生多次反射目标的雷达截面计算.Based on 3-D graphics hardware accelerator and Z-Buffer technique,graphic electromagnetic computing (GRE-CO)algorithm can efficiently resolve blanking difficulties and visualization problems of traditional electromagnetic calculation pro-cedures .Therefore,GRECO algorithm is considered as one of the most efficient methods to acquire characteristics of high-frequency and electricity large-sized target .However,there are disadvantages of traditional GRECO algorithm,as follows:normal vector of tar-get cannot be extracted accurately,calculation accuracy is affected by screen resolution greatly and multiple reflections cannot be calculated directly .As a result,traditional GRECO algorithm is limited for this reason and cannot be used in some region widely . The traditional GRECO is improved in this paper,so that the geometric information of pixel can be extracted accurately .Technique of off-screen rendering based on frame buffer object (FBO)is used for improving the algorithm .Then the normal vector of target can be obtained precisely and effectively .Traditional discriminated method of facet pairs is improved by using area projection/physi-cal optics to adapt the computation of RCS multiple scattering .

关 键 词:雷达截面积 图形电磁学 多次反射 帧缓存对象 离屏渲染 

分 类 号:TN911.23[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象