检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:洪家军[1]
出 处:《河南城建学院学报》2014年第6期72-76,83,共6页Journal of Henan University of Urban Construction
基 金:福建省教育厅国内访问学者资金资助项目;福建省中青年教师教育科研资助项目(A类)(JA14279)
摘 要:DDoS以其攻击方法简单、破坏性强且难以追查等特点一直是互联网的主要威胁,而Hadoop作为云计算的主流平台,同样面临DDoS攻击的严重威胁。对此提出了一种基于One class SVM分类算法的Hadoop DDoS攻击分布式检测体系。该体系采用主动学习和疑似攻击核实机制,实时更新训练集,可以有效降低误报率和漏报率。实验结果表明,该体系有较好的分类准确性、较低的漏报率和误判率。DDoS has been a major threat to the Internet. It has the characteristics of simple attack method,destructiveness and untraceable. Research and application of cloud computing is being carried out. The Hadoop,as mainstream platform of cloud computing,faces the same serious threats of DDoS attack. Thus a new Hadoop DDoS distributed detection system based on one class SVM classification algorithm is proposed in this article.The mechanism of active learning and suspected attack verification are used in the new system,which can update the training set in real time,reduce the false positive rate and false negative rate effectively by using this method. It shows that the system has better classification accuracy,low false positive rate and false negative rate in experimental results.
分 类 号:TP309[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.19.64.3