检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机仿真》2015年第3期163-168,共6页Computer Simulation
基 金:广西自然科学基金资助项目(桂科自0832075)
摘 要:电池荷电状态(SOC)准确预测是电池管理系统的关键任务。针对过去电池SOC预测精度低等问题,提出了一种采用极限学习机神经网络(ELM)的预测模型,以电池电压和电流作为模型的输入量,SOC作为输出量。在建模过程中,采用粒子群优化算法(PSO)对ELM随机给定的输入权值矩阵和隐层阈值进行寻优,降低了随机性给模型造成的影响,提高了模型预测精度。利用实验采集的数据进行模型训练和预测,结果表明,用粒子群算法优化后的极限学习机模型(PSOELM)与单纯的ELM以及传统的BP和SVM相比,具有更高的预测精度和泛化性能。为磷酸铁锂电池的SOC预测提供了一种新的方法。Estimation of SOC of LiFePO4Li-ion battery is one of the key missions for battery management system. For the low accuracy of SOC prediction in the past,an estimation model based on extreme learning machine(ELM) neural network was proposed. In the model,voltage and current were used as input vector and the value of SOC was used as output vector. After the input weight matrix and hidden layer threshold of ELM are optimized by PSO,the effects of its randomness to model were reduced and the prediction accuracy of the model was improved. Using the experimental data collected to train the model and then predict the output,the results show that compared with ELM and BP and SVM neural network,the PSOELM can get higher prediction precision and has more advantages in the generalization performance. Therefore,the new method can be provided for the SOC prediction of LiFePO4Li-ion battery.
关 键 词:磷酸铁锂电池 荷电状态 极限学习机 粒子群优化算法 预测
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.187