检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]淮阴工学院计算机工程学院,江苏淮安223005 [2]沧州师范学院计算机系,河北沧州061000
出 处:《中文信息学报》2015年第1期111-117,132,共8页Journal of Chinese Information Processing
基 金:河北省科技支撑计划项目(10213581);淮安市社会发展项目(HASZ2012046);淮安市科技支撑计划(工业)项目(HAG2012086)
摘 要:近几年来,短文本信息流广泛应用于一些全民媒体,它在公开传递信息同时携带了丰富且具有极大价值的信息资源。该文提出了一种回顾式话题识别模型,改进了权值计算方法,有效提取了具有较强分辨话题能力的关键词,在聚类过程中将BIC值作为话题类别合并依据,提高了聚类的准确率。通过进行时间段分隔和去掉孤立点信息提高了算法的效率。实验结果表明,该方法有效地提高了短文本信息流的话题检测准确率和效率。In recent years, the short text information flow has occured in some public media. For this kind of data, a retrospective topic identification model is presented with an improved weight estimation. It employes the value of BIC for clustering to improve the clustering accuracy. By dividing the time segments and removing isolated information point, the efficiency of the algorithm is further improved. The experimental results show that this method achieves good accuracy and efficiency in the topic detection of the short text information flow.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.17.59.50