检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:魏楚元[1,2] 湛强[1] 樊孝忠[1] 毛煜[1] 张大奎[1]
机构地区:[1] 北京理工大学计算机学院,北京100081 [2]北京建筑大学计算机系,北京100044
出 处:《中文信息学报》2015年第1期146-154,共9页Journal of Chinese Information Processing
基 金:国家重点基础研究发展计划(973计划)(2013CB329303);国家自然科学基金(61371194);北京市优秀人才培养资助项目(2013D005017000006)
摘 要:复杂类问题理解是中文问答系统研究的难点,基于组块的问句分析方法将整个问句转化为若干组块,降低了问句分析的难度和复杂性。针对以含有事件(动作)信息的复杂类问题,提出基于语义组块的中文问答系统问题语义表征模型,采用语义组块的思想将问题的语义成分定义为疑问焦点块、问题主题块和问题事件块三个语义组块,对问句中的事件语义信息,建立了问题事件语义结构,将一个问句表征为一个基于语义组块的问题语义表征结构,用于问答系统的问题理解。通过序列标注学习方法实现问题语义表征中语义组块自动标注。实验结果表明:问题语义组块标注效果较好,问题语义表征模型获取了问题的关键语义信息,为语义层面上的问题理解提供基础。Question understanding of complex questions is a challenging issue in question answering system. For complex questions'containing events (actions) information, this paper presents a question semantic representation (QSR) model based on semantic chunk. The semantic components of a complex question are labeled abstractly as the question focus, the question topic and the question event. A Semantic Structure of Question Event is then crea- ted to represent the semantic information of question event, including the question focus chunk, the question topic chunk and the question event chunk. To map the interrogative sentence into this question semantic representation, the Conditional Random Fields model is adopted for automatic semantic labeling of question semantic representation. The results show that automatic semantic labeling gains better performance.
关 键 词:复杂类问题 事件 问题语义表征 语义组块 问题理解
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30