一种扩展式CRFs的短语情感倾向性分析方法研究  被引量:6

Phrase-level Sentiment Analysis Approach Based on Yet Another CRFs

在线阅读下载全文

作  者:乌达巴拉[1,2] 汪增福[1,2] 

机构地区:[1]中国科学技术大学自动化系,安徽合肥230027 [2]中国科学院合肥智能机械研究所,安徽合肥230031

出  处:《中文信息学报》2015年第1期155-162,共8页Journal of Chinese Information Processing

摘  要:短语情感倾向性分析是文本情感分析的重要研究内容。该文将短语情感倾向性分析问题视作序列标注问题,利用条件随机场模型实现短语的情感倾向性判断。条件随机场模型是利用序列特征处理序列标注问题的经典方法,然而现有条件随机场模型无法将词语的情感倾向性分析与短语的情感倾向性分析相结合,从而造成准确率不高。因此,该文提出一种扩展式条件随机场模型YACRFs。该模型在链式条件随机场模型的基础上进行扩充,将词语情感倾向性分析与短语情感倾向性分析有效地结合起来,引入了情感词汇、短语规则模板以及词性等特征。与传统的规则方法和统计分类方法进行对比实验,该文提出方法取得了最高准确率81.07%。进一步地,在应用于句子情感倾向性分析的实验中得到了94.30%的准确率。实验结果表明,该文所提出的YACRFs模型能够显著提高短语情感倾向性判断结果的准确率。This paper treat the phrase-level sentiment analysis as a sequence annotation problem, and proposes an extension model of conditional random fields, YACRFs, to annotate sentiment orientation of phrases. In contrast to previous works focusing on linear-chain CRFs, which corresponds to finite-state machines wtih efficient exact inference algorithms,we wish to label sequence data in multiple interacting ways--for example, performing word based semantic orientations tagging and phrase-level sentiment analysis simultaneously, increasing joint accuracy by sha- ring information between them. The proposed model incorporates the word emotional orientation analysis process and the phrase analysis through the incorporation of the features of polarity words, phrase rules template as well as part of speech characteristics. Experiments shows the proposed model performs best with an accuracy of 81.07 %. And applied the results in sentence-level sentiment analysis, it brings again the best accuracy of 94.30%.

关 键 词:短语 情感倾向性分析 条件随机场 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象