Effect of Holding Time on the Microstructure and Mechanical Properties of Dual-Phase Steel during Intercritical Annealing  被引量:4

Effect of Holding Time on the Microstructure and Mechanical Properties of Dual-Phase Steel during Intercritical Annealing

在线阅读下载全文

作  者:李壮 WU Di Lü Wei YU Huanhuan SHAO Zhenyao LUO Lei 

机构地区:[1]College of Materials Science and Engineering, Shenyang Aerospace University [2]State Key Lab of Rolling and Automation, Northeastern University [3]College of Graduate Student, Shenyang Aerospace University

出  处:《Journal of Wuhan University of Technology(Materials Science)》2015年第1期156-161,共6页武汉理工大学学报(材料科学英文版)

基  金:Founded by National Natural Science Foundation of China(No.51004037);Shenyang City Application Basic Research Project(No.F13-316-1-15);State Key Laboratory Opening Project of Northeastern University(No.12SYS05)

摘  要:Continuous annealing simulation tests were conducted by using a continuous annealing thermomechanical simulator. Holding times of 5, 60, 180, and 480 seconds for an intercritical annealing temperature of 820℃ were adopted to investigate the evolution of the mierostructure and mechanical properties of ferrite-bainite dual-phase steel. The ferrite-bainite dual-phase steel was characterized by high strength and low yield ratio due to the presence of the constituents (polygonal ferrite, bainite, martensite and retained austenite) of the steel microstructure. Specimen 3 exhibits the highest value of A50 (7.67%) and a product of Rm × A50 (10453MPa%) after a 180s holding. This is likely attributed to the presence of a C-enriched retained anstenite in the microstructure. And the effect of martensite islands and carbide precipitate is thought to be able to contribute in strengthening the present steel. It is expected that equilibrium of anstenite fraction would be reached for reasonable intercritical holding period, regardless of the heating temperature. The results suggest that long increasing holding times may not be needed because the major phase of the microstructure does not change very significantly. It is favorable for industrial production of DP steels to shorten holding times. Key words: ferrite-bainite dual-phase steel; holding time; martensite islands; mechanical propertiesContinuous annealing simulation tests were conducted by using a continuous annealing thermomechanical simulator. Holding times of 5, 60, 180, and 480 seconds for an intercritical annealing temperature of 820℃ were adopted to investigate the evolution of the mierostructure and mechanical properties of ferrite-bainite dual-phase steel. The ferrite-bainite dual-phase steel was characterized by high strength and low yield ratio due to the presence of the constituents (polygonal ferrite, bainite, martensite and retained austenite) of the steel microstructure. Specimen 3 exhibits the highest value of A50 (7.67%) and a product of Rm × A50 (10453MPa%) after a 180s holding. This is likely attributed to the presence of a C-enriched retained anstenite in the microstructure. And the effect of martensite islands and carbide precipitate is thought to be able to contribute in strengthening the present steel. It is expected that equilibrium of anstenite fraction would be reached for reasonable intercritical holding period, regardless of the heating temperature. The results suggest that long increasing holding times may not be needed because the major phase of the microstructure does not change very significantly. It is favorable for industrial production of DP steels to shorten holding times. Key words: ferrite-bainite dual-phase steel; holding time; martensite islands; mechanical properties

关 键 词:ferrite-bainite dual-phase steel holding time maxtensite islands mechanical properties 

分 类 号:TG161[金属学及工艺—热处理] TG142.1[金属学及工艺—金属学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象