检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:贾旭[1] 王锦凯[1] 崔建江[2] 孙福明[1] 薛定宇[2]
机构地区:[1]辽宁工业大学电子与信息工程学院,辽宁锦州121001 [2]东北大学信息科学与工程学院,沈阳110819
出 处:《计算机应用》2015年第4期1129-1132,1153,共5页journal of Computer Applications
基 金:国家自然科学基金资助项目(61272214);辽宁省教育厅资助项目(L2013241)
摘 要:为提高静脉特征提取的有效性,提出了基于稀疏编码的手背静脉识别算法。首先,在图像采集过程中,依据实时的质量评价结果对采集系统参数进行自适应调整,获取高质量静脉图像;其次,针对主观选择的特征有效性主要依赖于经验的缺陷,提出了基于稀疏编码的特征学习机制,从而获得客观优质的静脉特征。实验结果表明,基于所提算法获得的静脉特征具有较好的类间区分性与类内紧凑性,令使用该算法的系统具有较高的识别率。In order to improve the effectiveness of vein feature extraction, a dorsal hand vein recognition method based on sparse coding was proposed. Firstly, during image acquisition process, acquisition system parameters were adaptively adjusted in real-time according to image quality assessment results, and the vein image with high quality could be acquired. Then concerning that the effectiveness of subjective vein feature mainly depends on experience, a feature learning mechanism based on sparse coding was proposed, thus high-quality objective vein features could be extracted. Experiments show that vein features obtained by the proposed method have good inter-class separableness and intra-class compactness, and the system using this algorithm has a high recognition rate.
关 键 词:静脉识别 质量评价 GABOR变换 稀疏编码 特征优化
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.104