检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙赫[1] 梁红梅[1] 常学礼[1] 崔青春[1] 陶云[1]
机构地区:[1]鲁东大学地理与规划学院
出 处:《经济地理》2015年第3期154-162,共9页Economic Geography
基 金:国家自然科学基金项目(41271193);鲁东大学2013年大学生科技创新基金项目(13l090);鲁东大学2015年大学生科技创新基金项目(ld15l081)
摘 要:基于研究单元全部土地利用类型数据,采用碳排放计算模型,估算了中国31个省区1990—2008年的土地利用碳排放强度,揭示其时空演变规律,并利用空间自相关方法,探讨了中国省级尺度土地利用碳排放强度的空间关联特征。结果表明:11990—2008年,中国土地利用碳排放量从9.67×108t持续上升至32.37×108t。建设用地是主要的碳排放来源,其碳排放量占总碳排放量的97.83%以上。林地是主要的碳汇,其碳排放量占总碳排放量的90%以上。2受经济发展水平和地形差异的影响,碳排放强度空间差异显著,重度碳排放区域集中分布在东部、北部沿海地区,轻度碳排放区域集中分布在西北、西南地区。3全局自相关Moran′s I值从1990年的0.1558持续上升至2008年的0.2734,说明中国土地利用碳排放强度在省级尺度上具有明显的空间集聚特征,且集聚程度不断增强。4集聚中心和孤立点的空间转移存在较强的规律性。5局域自相关分析表明,中国土地利用碳排放强度表现出十分明显的局部空间差异。碳排放强度高值集聚区和低值集聚区均表现出较强的空间锁定和路径依赖特征,体现为高值集聚区向沿海集中,低值集聚区向内陆迁移。This paper estimated the carbon emission intensity on land use patterns on the basis of all the data of land use composition from 31 provinces in China from 1990 to 2008, revealing its rules of the spatial- temporal evolution by building the model for calculating the carbon emissions and discussing its spatial association at provincial scale with the methods of spatial autocorrelation. The results showed that 1 total carbon emission of land use were calculated, and showed a rising trend in the overall, increasing from 96.7 million tons to 323.7 million tons during 1990- 2008. The construction land was a major carbon emission source which accounted for more than 97.83% of the total carbon emissions and woodland was a major carbon sink, accounting for more than 90% of that. 2There was obviously spatial difference on the carbon emission intensity that severe carbon emission concentrated upon the eastern and northern coastal regions, while mild carbon emission distribution focused on northwest and southwest which was influenced by the difference of economical development and terrain. 3 Global Moran's I had increased continually from 0.1558 to0.2734, indicating that there were evident spatial agglomerating features among provincial regions in China, and the degree of similar carbon emission agglomerated intensity had strengthened in space from 1990 to 2008. 4 It existed significant regularity on the space-shifting of gathering center and outlier. 5local spatial autocorrelation analysis showed that the difference of carbon emission intensity on the local spatial was apparent. It was also appearing features on spatial locking and path dependence of high and low value cluster district, reflecting that high value cluster district concentrated on coastal regions and low value cluster district has shifted to the interior.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145