基于眼动特征的疲劳驾驶检测方法  被引量:44

Detection of driver fatigue based on eye movements

在线阅读下载全文

作  者:牛清宁 周志强 金立生[2] 刘文超 于鹏程 

机构地区:[1]公安部道路交通安全研究中心,北京100062 [2]吉林大学交通学院,吉林长春130022

出  处:《哈尔滨工程大学学报》2015年第3期394-398,共5页Journal of Harbin Engineering University

基  金:教育部新世纪优秀人才基金资助项目(NCET-10-0435);高校博士学科点专项科研基金资助项目(20110061110036);吉林省人才开发基金资助项目(801121100417);吉林省科技厅国际合作资助项目(20130413056GH)

摘  要:为了提高疲劳驾驶检测模型准确率和实时性,基于驾驶模拟实验,利用Smart Eye系统提取了驾驶人不同驾驶状态下眼动数据。基于眼动参数协议,提出了眨眼频率、PERCLOS、注视方向和注视时间4个特征参数的计算方法。分析了各特征参数的最优时窗,针对不同特征参数最优时窗差异,提出了滑移时窗的数据融合方法。基于支持向量机,搭建了疲劳驾驶检测模型。实验结果表明,该模型可以有效地进行疲劳状态检测,准确率能够达到83.84%。In order to improve the accuracy and real time performance of the driver fatigue detection model,based on driving simulation experiment,the eye movement data in different driving states were collected using Smart Eye system. According to the protocol of Smart Eye system,a calculation method was proposed to obtain the characteristic parameters,including blink frequency,PERCOLS,gaze direction and fixation time. The best time window of different characteristic parameters was analyzed. For the best time window of each characteristic parameter was different,the slip time window was proposed to fuse the data. A diver fatigue detection model was developed based on the support vector machine. Validation tests showed that the method based on the driver's eye movements has a successful fatigue detection,whose accuracy reaches 83.84%.

关 键 词:疲劳驾驶 眼动特征 支持向量机 滑移时窗 时窗 检测模型 

分 类 号:U461.91[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象