检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张利平[1] 陈浩天[1] 王伟锋[2] 李开拓[1]
机构地区:[1]华北水利水电大学电力学院,河南郑州450045 [2]西安热工研究院有限公司,陕西西安710032
出 处:《热力发电》2015年第3期53-57,共5页Thermal Power Generation
摘 要:为实现对凝汽器真空的优化控制,引入一种采用粒子群优化(PSO)算法改进的Elman神经网络,建立双压凝汽器真空预测模型,提出对双压凝汽器高、低压侧真空分别进行预测计算,将该模型应用于某600 MW机组的双压凝汽器真空预测,并与普通算法改进的Elman神经网络的预测结果进行比较。结果表明:采用PSO算法改进的Elman神经网络对双压凝汽器高、低压侧真空预测的收敛速度更快、精确度更高,是一种行之有效的双压凝汽器真空预测模型。An Elman neural network optimized by particle swarm optimization( PSO) algorithm was introduced to establish the vacuum prediction model for dual-pressure condensers. The calculation model which can forecast both the high pressure and low pressure side of the dual-pressure condensers was proposed. Moreover,the above model was applied in dual-pressure condenser in a 600 MW unit and the results were compared with that predicted by the common algorithm-modified Elman neural network. The results show that,this Elman neural network optimized by PSO algorithm has faster convergence speed and higher accuracy,which is a feasible model for vaccum prediction in dual-pressure condensers.
关 键 词:ELMAN神经网络 粒子群算法 双压凝汽器 低压侧真空 高压侧真空 预测
分 类 号:TK264.11[动力工程及工程热物理—动力机械及工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.16.44.178