应用PSO算法改进Elman神经网络的双压凝汽器真空预测  被引量:10

Application of PSO algorithm-modified Elman neural network in vacuum prediction for dual-pressure condensers

在线阅读下载全文

作  者:张利平[1] 陈浩天[1] 王伟锋[2] 李开拓[1] 

机构地区:[1]华北水利水电大学电力学院,河南郑州450045 [2]西安热工研究院有限公司,陕西西安710032

出  处:《热力发电》2015年第3期53-57,共5页Thermal Power Generation

摘  要:为实现对凝汽器真空的优化控制,引入一种采用粒子群优化(PSO)算法改进的Elman神经网络,建立双压凝汽器真空预测模型,提出对双压凝汽器高、低压侧真空分别进行预测计算,将该模型应用于某600 MW机组的双压凝汽器真空预测,并与普通算法改进的Elman神经网络的预测结果进行比较。结果表明:采用PSO算法改进的Elman神经网络对双压凝汽器高、低压侧真空预测的收敛速度更快、精确度更高,是一种行之有效的双压凝汽器真空预测模型。An Elman neural network optimized by particle swarm optimization( PSO) algorithm was introduced to establish the vacuum prediction model for dual-pressure condensers. The calculation model which can forecast both the high pressure and low pressure side of the dual-pressure condensers was proposed. Moreover,the above model was applied in dual-pressure condenser in a 600 MW unit and the results were compared with that predicted by the common algorithm-modified Elman neural network. The results show that,this Elman neural network optimized by PSO algorithm has faster convergence speed and higher accuracy,which is a feasible model for vaccum prediction in dual-pressure condensers.

关 键 词:ELMAN神经网络 粒子群算法 双压凝汽器 低压侧真空 高压侧真空 预测 

分 类 号:TK264.11[动力工程及工程热物理—动力机械及工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象