检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:芦新建[1] 贺康宁[1] 王辉[1] 王文义 赵丽娟 安国才
机构地区:[1]北京林业大学水土保持学院,水土保持与荒漠化防治教育部重点实验室,北京100083 [2]青海省大通县宝库林场,西宁810104
出 处:《农业工程学报》2015年第7期137-144,共8页Transactions of the Chinese Society of Agricultural Engineering
基 金:“十二五”国家科技支撑计划(2011BAD38B0503)
摘 要:目前模拟林冠截留的Gash模型的应用多是针对某一特定点或特定林分开展,而在区域范围内的应用国内尚无报道,在国外也仅见其在澳大利亚水资源评价系统AWRA.L模型中的应用。该研究介绍了AWRA-L(Australian water resources assessment-landscape)模型,并利用GI_。ASS LAI遥感数据结合浸水法获得的林冠持水量,使用该模型对试验点白桦(Betula platyphylla Suk.)天然次生林2013年的林冠截留进行模拟。结果显示,基于Van等改进过的Gash模型的AWRA.L模型和基于Gash(1979)模型的AWRA—L(1979)模型,对累积林冠截留模拟的绝对误差分别为-4.4和1.5 mm,相对误差分别为-8.7%和3.0%;对于单场降雨林冠截留的模拟结果显示,2模型的模拟误差值分别为(-0.15±1.64)和(-0.03±1.39)mm,模拟值与实测值之间无显著差异。研究结果说明结合GLASS LAI遥感数据,AWRA-L模型可以应用于区域范围林冠截留的模拟,模拟结果较好。The application of the Gash model to simulate canopy interception is mostly on the study plot or a specified forest, and the application in a landscape scale is only reported in the Australian Water Resource Assessment system (AWRA-L). This study introduced the AWRA-L model, and aimed to simulate the interception loss of the natural secondary forest of birch (Betulaplatyphylla Suk.) during 2013 in China. The GLASS LAI data and submerging method were used to get the canopy capacity for different periods. The leaf area index (LAI) value obtained before germination was assumed to be the area of branches and trunks. While the LAI value obtained after germinationwas the area of the leaves, branches and trunks. The differences between the LAI values after and before germination were the area of leaves when the growing of branches and trunks was ignored. The submerging method showed that the water capacity of leaves and stems per unit area were 0.17 and 0.33 mm, respectively. The capacity of branches and trunks was 0.23 mm. The capacity of leaves was 0.04-0.51 mm. The mean canopy capacity was 0.60~0.14 mm. The intercept method showed the canopy capacity and the trunk capacity were 0.62 and 0.04 mm, respectively. The whole capacity of the birch forest in its over ground parts was 0.66 mm. The canopy capacity by the submerging method and the intercept method was not significantly different (P=0.23). Considering of the high canopy cover fraction of the birch forest, both the simulating results of AWRA-L model based on Van model and the AWRA-L(1979) model based on Gash (1979) model were discussed in the paper. For the 25 rain events measured during the experiment, the simulating errors of the cumulative interception loss obtained from the AWRA-L model and the AWRA-L(1979) model were -9.2 and -1.7 ram, respectively. The relative errors were -14.8% and -2.8%, respectively. Both the AWRA-L model and the AWRA-L(1979) model underestimated the interception loss. When the rain event on June 8 with t
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.90