The inner solar system cratering record and the evolution of impactor populations  被引量:6

The inner solar system cratering record and the evolution of impactor populations

在线阅读下载全文

作  者:Robert G.Strom Renu Malhotra Zhi-Yong Xiao Takashi Ito Fumi Yoshida Lillian R Ostrach 

机构地区:[1]Lunar and Planetary Laboratory, The University of Arizona [2]Planetary Science Institute, China University of Geosciences(Wuhan) [3]National Astronomical Observatory [4]NASA Goddard Space Flight Center

出  处:《Research in Astronomy and Astrophysics》2015年第3期407-434,共28页天文和天体物理学研究(英文版)

基  金:support from NSF grant #AST-1312498

摘  要:We review previously published and newly obtained crater size-frequency distributions in the inner solar system. These data indicate that the Moon and the ter- restrial planets have been bombarded by two populations of objects. Population 1, dominating at early times, had nearly the same size distribution as the present-day asteroid belt, and produced heavily cratered surfaces with a complex, multi-sloped crater size-frequency distribution. Population 2, dominating since about 3.8-3.7 Gyr, had the same size distribution as near-Earth objects (NEOs) and a much lower im- pact flux, and produced a crater size distribution characterized by a differential -3 single-slope power law in the crater diameter range 0.02 km to 100 km. Taken to- gether with the results from a large body of work on age-dating of lunar and meteorite samples and theoretical work in solar system dynamics, a plausible interpretation of these data is as follows. The NEO population is the source of Population 2 and it has been in near-steady state over the past ~ 3.7-3.8 Gyr; these objects are derived from the main asteroid belt by size-dependent non-gravitational effects that favor the ejection of smaller asteroids. However, Population 1 was composed of main belt as- teroids ejected from their source region in a size-independent manner, possibly by means of gravitational resonance sweeping during orbit migration of giant planets; this caused the so-called Late Heavy Bombardment (LHB). The LHB began some time before ~3.9 Gyr, peaked and declined rapidly over the next ~ 100 to 300 Myr, and possibly more slowly from about 3.8-3.7 Gyr to ~2 Gyr. A third crater population (Population S) consisted of secondary impact craters that can dominate the cratering record at small diameters.We review previously published and newly obtained crater size-frequency distributions in the inner solar system. These data indicate that the Moon and the ter- restrial planets have been bombarded by two populations of objects. Population 1, dominating at early times, had nearly the same size distribution as the present-day asteroid belt, and produced heavily cratered surfaces with a complex, multi-sloped crater size-frequency distribution. Population 2, dominating since about 3.8-3.7 Gyr, had the same size distribution as near-Earth objects (NEOs) and a much lower im- pact flux, and produced a crater size distribution characterized by a differential -3 single-slope power law in the crater diameter range 0.02 km to 100 km. Taken to- gether with the results from a large body of work on age-dating of lunar and meteorite samples and theoretical work in solar system dynamics, a plausible interpretation of these data is as follows. The NEO population is the source of Population 2 and it has been in near-steady state over the past ~ 3.7-3.8 Gyr; these objects are derived from the main asteroid belt by size-dependent non-gravitational effects that favor the ejection of smaller asteroids. However, Population 1 was composed of main belt as- teroids ejected from their source region in a size-independent manner, possibly by means of gravitational resonance sweeping during orbit migration of giant planets; this caused the so-called Late Heavy Bombardment (LHB). The LHB began some time before ~3.9 Gyr, peaked and declined rapidly over the next ~ 100 to 300 Myr, and possibly more slowly from about 3.8-3.7 Gyr to ~2 Gyr. A third crater population (Population S) consisted of secondary impact craters that can dominate the cratering record at small diameters.

关 键 词:solar system: formation -- minor planets asteroids -- Earth -- Moon 

分 类 号:P182[天文地球—天文学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象