混合拓扑因子的科研网络合作关系预测  

Mixture Topological Factors for Collaboration Prediction in Academic Network

在线阅读下载全文

作  者:伍杰华[1,2] 朱岸青[1,3] 

机构地区:[1]广东工贸职业技术学院计算机工程系,广州510510 [2]华南理工大学计算机科学与工程学院,广州510641 [3]暨南大学信息科学技术学院,广州510632

出  处:《现代图书情报技术》2015年第4期65-71,共7页New Technology of Library and Information Service

基  金:国家自然科学基金青年基金项目"半监督排序学习理论与算法研究"(项目编号:61003045);广东省教育部产学研结合项目"基于节能的企业能耗监控集成管理平台研发及应用"(项目编号:2012B091100043)的研究成果之一

摘  要:【目的】通过图论和复杂网络理论中的链接(关系)预测算法挖掘科研合作网络的结构信息,并预测目前尚未合作的学者有哪些在未来会产生合作关系。【方法】提出一种新颖的集成局部拓扑特征因子和全局社区拓扑特征的混合拓扑因子合作关系预测模型(Mixture Topological Factor,MTF),该模型引入朴素贝叶斯模型关系预测算法计算局部因子,采用社区贡献度和参与度计算全局社区特征因子进行集成。【结果】实验结果表明,MTF方法能够在采用不同社区算法的基础上有效地对真实的科研合作网络关系预测问题建模,在效果上也要优于一些经典和新近提出的算法。【局限】该方法有待进一步应用到更大规模的网络结构中。【结论】能够通过深入挖掘科研合作网络基于社区信息的拓扑属性提高预测精确度,同时为该类模型的研究提供一种新的方案。[Objective] The paper aims to predict the cooperation between scholars according to the academic research network's structural information. [Methods] A novel mixture topological factor predictive model called MTF is proposed, which cooperating local feature factors and global community factors. This model firstly introduces Naive Bayesian algorithm to calculate local factors and then uses community contribution to compute the global factors. [Results] Experimental results show that MTF method can effectively handle the task of real scientific collaboration network relationships prediction, also performs better than some of the classic and newly proposed algorithms. [Limitations] The data used in the experiments should be at a larger scale. [Conclusions] This paper proves that the proposed model can mine community information for improving prediction performance, which leads to a new path in such area.

关 键 词:科研网络 合作关系 合作预测 学者社区 社区信息 混合拓扑因子模型 

分 类 号:G202[文化科学—传播学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象