育种进化的改进遗传算法在水电站负荷分配中的应用  

Breed-evolutionary Improved Genetic Algorithm for Load Dispatch of Hydropower Station

在线阅读下载全文

作  者:邓丽丽[1] 杨侃[1] 王启明 陈静 周佳佳[1] 

机构地区:[1]河海大学水文水资源学院,江苏南京210098 [2]句容市水利农机局,江苏镇江212400 [3]宜兴市水利农机局,江苏宜兴214207

出  处:《水文》2015年第2期22-27,共6页Journal of China Hydrology

基  金:国家重点基础研究发展规划973项目(2012CB417006);国家科技支撑计划课题(2009BAC56B03)

摘  要:针对遗传算法求解水电站负荷优化分配问题时常出现的收敛性差、易早熟等问题,提出一种基于育种进化的改进遗传算法。改进算法运用部分解约束的初始种群生成法避开空蚀振动区,定义了与群体进化程度有关的种群多样性函数和种群多样性阈值,同时有效地应用了遗传的全局搜索能力和育种的局部搜索能力。以三峡水电站为例与标准遗传算法进行了比较,不同的负荷分配结果表明:育种进化的改进遗传算法能够避开空蚀振动区的影响,保证机组的稳定安全运行;同时由于育种进化的强局部搜索能力,保持了种群的多样性,提高了算法的搜索能力和收敛性。Facing on the bad convergence and easy premature often emerged in Genetic Algorithm making solution of hydropower station economic load dispatch, the Breed-evolutionary Improved Genetic Algorithm (BIGA) was proposed. BIGA used the partial solution constraint initial population generation method to avoid cavitations-vibration range, so as to describe the level of group-evolution, and define the function of population-diversity and threshold of population-diversity. Meanwhile, the global searching ability of Genetic Algorithm and local searching ability of Breed were effectively applied. A contrast between BIGA and SGA applied for the Three Gorges hydropower station was presented. The distribution results based on several loads show that: In BIGA, stable and safe operation of unit were ensured by avoiding cavitations-vibration range. And, with the strong local searching ability of breed, the population diversity was maintained, and the searching ability and convergence of the algorithm were improved.

关 键 词:厂内经济运行 负荷优化分配 遗传算法 育种 部分解约束 

分 类 号:TV697.1[水利工程—水利水电工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象