混合型多属性决策的HB-SIR方法  被引量:10

Novel HB-SIR method for hybrid multiple attribute decision making

在线阅读下载全文

作  者:王方[1] 李华[1] 张晓[1] 

机构地区:[1]西安电子科技大学经济与管理学院,陕西西安710071

出  处:《系统工程与电子技术》2015年第5期1099-1105,共7页Systems Engineering and Electronics

基  金:高等学校博士学科点专项科研基金(20130203120024);中央高校基本科研业务费专项资金(BDY251412);陕西省软科学项目(2013KRZ25)资助课题

摘  要:针对权重已知且属性值为精确数、区间数、三角模糊数和梯形模糊数的混合型多属性决策问题,提出了一种新的混合型级别高于方法(hybrid superiority and inferiority ranking,HB-SIR)。该方法依据混合型多属性决策矩阵构建正负理想方案,将混合型多属性决策矩阵转化成标准优势和劣势差异信息矩阵,进而通过高斯准则计算各个方案的优势指数和劣势指数,构建优势矩阵和劣势矩阵,并使用简单加权(simple additive weighting,SAW)方法计算出方案的优势流和劣势流,据此获得方案的部分或完全排序。最后,通过一个算例验证了该方法的有效性。For the problem of hybrid multiple attribute decision making with known information on attribute weights to which the attribute values are given in terms of crisp numbers, interval numbers, triangular fuzzy numbers and trapezoidal fuzzy numbers, a hybrid superiority and inferiority ranking (HB-SIR)method is pro- posed based on the outranking relation. Firstly, according to the hybrid decision matrix, the positive-ideal alter- native and negative-ideal alternative are determined, then the hybrid decision matrix is transformed into both standardized advantage difference information matrix and standardized disadvantage difference information ma- trix based on different distance calculation formulas. Moreover, the superiority matrix (S-matrix) and the infe- riority matrix (I-matrix) are constructed by calculating the superiority indexes and the inferiority indexes accord- ing to the Gaussian criterion. Furthermore, the simple additive weighting (SAW) method is employed to calculate the superiority flow and inferiority flow, and the complete ranking or partial ranking of the alternatives can be ob- tained. Finally, a numerical example is used to illustrate the feasibility and validity of the proposed method.

关 键 词:混合型多属性决策 级别高于关系 高斯准则 排序 

分 类 号:C934[经济管理—管理学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象