线性传输方程带二次多项式重构的熵格式(英文)  

Entropy Scheme with Quadratic Polynomial Reconstruction for Linear Advection Equation

在线阅读下载全文

作  者:陈荣三[1] 邹敏[1] 刘安平[1] 

机构地区:[1]中国地质大学(武汉)数学与物理学院,湖北武汉430074

出  处:《应用数学》2015年第2期256-259,共4页Mathematica Applicata

基  金:Supported by the National Natural Science Foundation of China(11201436)

摘  要:最近几年来,茅德康等发展了一类有限体积格式计算偏微分方程[1,3-4,6-9].该类格式得到比较好的计算结果.在文[8]中王和茅提出一个满足两个守恒律和三个守恒律的熵格式计算线性发展方程,但是该格式是基于线性多项式重构.本文发展了一个基于二次多项式重构满足两个守恒律的熵格式.数值试验表明本文的格式在长时间计算方面优于文[8].In recent years, MAO and his co-workers developed a class of finite-volume schemes for evolution partial differential equations[l'3-4'6-9]. Numerical experiments showed the efficiency of the method. In [8], WANG and MAO proposed an entropy scheme satisfying two conversation laws and three conversation laws, but the reconstruction based on linear polynomial for linear advection equa- tion. In this paper, we develop an entropy scheme with quadratic polynomial reconstruction satisfy- ing two conversation laws for linear advection equation. Numerical experiments show that our scheme is more robust in long-time behaviors than that of [8].

关 键 词:线性发展方程 二次多项式重构 熵格式 

分 类 号:O241.82[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象