检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国地质大学(武汉)数学与物理学院,湖北武汉430074
出 处:《应用数学》2015年第2期256-259,共4页Mathematica Applicata
基 金:Supported by the National Natural Science Foundation of China(11201436)
摘 要:最近几年来,茅德康等发展了一类有限体积格式计算偏微分方程[1,3-4,6-9].该类格式得到比较好的计算结果.在文[8]中王和茅提出一个满足两个守恒律和三个守恒律的熵格式计算线性发展方程,但是该格式是基于线性多项式重构.本文发展了一个基于二次多项式重构满足两个守恒律的熵格式.数值试验表明本文的格式在长时间计算方面优于文[8].In recent years, MAO and his co-workers developed a class of finite-volume schemes for evolution partial differential equations[l'3-4'6-9]. Numerical experiments showed the efficiency of the method. In [8], WANG and MAO proposed an entropy scheme satisfying two conversation laws and three conversation laws, but the reconstruction based on linear polynomial for linear advection equa- tion. In this paper, we develop an entropy scheme with quadratic polynomial reconstruction satisfy- ing two conversation laws for linear advection equation. Numerical experiments show that our scheme is more robust in long-time behaviors than that of [8].
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.19.234.118