检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:肖文华[1] 包卫东[1] 陈立栋[1] 王炜[1] 张茂军[1]
机构地区:[1]国防科技大学信息系统与管理学院,长沙410073
出 处:《电子与信息学报》2015年第4期791-797,共7页Journal of Electronics & Information Technology
基 金:国家自然科学基金(61175006);博士学科点专项科研基金(20134307110029)资助课题
摘 要:针对传统编码模型中存在的编码歧义性问题,该文提出一种考虑特征上下文的语义增强线性编码方法。首先,通过学习局部邻域中特征共生关系矩阵来表示上下文信息。然后,在编码过程中同时引入学习而得的上下文信息与特征上下文匹配权重得到语义增强编码模型。由于上下文信息与上下文匹配权重的功能,使得此编码方法不仅丰富了编码的语义信息,还能够有效避免噪声带来的影响。在3个基准数据集(Scene15,Caltech101以及Caltech256)上充分的实验验证了该方法的有效性。Considering the ambiguity problem in the traditional feature coding model, a feature context-aware semantic enhanced linear coding method is proposed. At first, the context information is represented by the concurrence matrix learnt from local area of the features. Then, the context information and a context matching weight are introduced into the coding model to form a new semantic enhanced coding model. Owning to the functions of context information and the context matching weight, this model not only enriches the semantic meaning of coding, but also efficiently avoids the affects of noise. Experiments on the baselines(Scene15, Caltech101, and Caltech256) demonstrate the effectiveness of the proposed method.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.21.113.219