Experimental study on vortex induced vibration(VIV) of a wide-D-section cylinder in a cross flow  被引量:1

Experimental study on vortex induced vibration(VIV) of a wide-D-section cylinder in a cross flow

在线阅读下载全文

作  者:Qingyang Wang Mogeng Li Shengjin Xu 

机构地区:[1]School of Aerospace Engineering,Tsinghua University

出  处:《Theoretical & Applied Mechanics Letters》2015年第1期39-44,共6页力学快报(英文版)

基  金:supported by the National Natural Science Foundation of China(11472158)

摘  要:Wake structures and vortex induced vibration (VIV) of a spring-supported wide-D-section cylinder were experimentally investigated using an X-wire, a novel phase-locked particle image velocimetry (PIV), and an acceleration sensor at a low speed wind tunnel. Compared with the fixed case, the 2P (two pair) vortex mode as defined by Govardhan and Williamson (2000) rather than S (single vortex) mode exists in the wake. The velocity deficit behind the cylinder is much larger than that of fixed case. The mean drag coefficient increases from 1.42 for the fixed case to 1.64 for the vibrating case. The Reynolds stress presents even distribution and small with increased distance of X/D = -2 to X/D = -10. The power spectra density based on accelerator and hot wire data presents a highlight identical. It shows that after a strong interaction the cylinder vibration and the vortex shedding come to a stable state. The vortex sheddin~ is totally locked on and controlled by the cylinder vihratinn.Wake structures and vortex induced vibration (VIV) of a spring-supported wide-D-section cylinder were experimentally investigated using an X-wire, a novel phase-locked particle image velocimetry (PIV), and an acceleration sensor at a low speed wind tunnel. Compared with the fixed case, the 2P (two pair) vortex mode as defined by Govardhan and Williamson (2000) rather than S (single vortex) mode exists in the wake. The velocity deficit behind the cylinder is much larger than that of fixed case. The mean drag coefficient increases from 1.42 for the fixed case to 1.64 for the vibrating case. The Reynolds stress presents even distribution and small with increased distance of X/D = -2 to X/D = -10. The power spectra density based on accelerator and hot wire data presents a highlight identical. It shows that after a strong interaction the cylinder vibration and the vortex shedding come to a stable state. The vortex sheddin~ is totally locked on and controlled by the cylinder vihratinn.

关 键 词:Wide D-section cylinderHot wirePhase-locked PIVVortex induced vibrationLock-on 

分 类 号:O327[理学—一般力学与力学基础]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象