检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Jun Li Xinwei Liu Li Zhou Qingshan Zhu Hongzhong Li
出 处:《Particuology》2015年第2期27-34,共8页颗粒学报(英文版)
基 金:the National Special Project for Development of Major Scientific Equipment(2011YQ12003908);the China National Funds for Distinguished Young Scientists(21325628) for their financial support
摘 要:A novel two-stage reduction process for synthesis of ultrafine nickel powder with a high purity and low density in a fluidized bed reactor has been developed in this work. The raw ultraflne NiO particles are first pre-reduced using hydrogen at lower temperatures (340-400 ℃), followed by further reduction at higher temperatures (500-600℃). The self-agglomeration of Ni particles formed during low-temperature reduction decreases the sintering activity of the newly formed ultrafine Ni particles, leading to good fluidization quality, even for the subsequent high-temperature reduction process. The agglomerated Ni particles have a high Ni content (above 99wt%), a low density (0.78g/cm^3) and a uniform particle size (approximately 100 μm). A concept design for a novel two-stage fluidized bed reactor process used to produce high-purity Ni powder was also proposed. This approach may be extended to the synthesis of other ultrafine/nanosized metals or metal oxides through a fluidization method.A novel two-stage reduction process for synthesis of ultrafine nickel powder with a high purity and low density in a fluidized bed reactor has been developed in this work. The raw ultraflne NiO particles are first pre-reduced using hydrogen at lower temperatures (340-400 ℃), followed by further reduction at higher temperatures (500-600℃). The self-agglomeration of Ni particles formed during low-temperature reduction decreases the sintering activity of the newly formed ultrafine Ni particles, leading to good fluidization quality, even for the subsequent high-temperature reduction process. The agglomerated Ni particles have a high Ni content (above 99wt%), a low density (0.78g/cm^3) and a uniform particle size (approximately 100 μm). A concept design for a novel two-stage fluidized bed reactor process used to produce high-purity Ni powder was also proposed. This approach may be extended to the synthesis of other ultrafine/nanosized metals or metal oxides through a fluidization method.
关 键 词:Ultrafine Ni powder PRODUCTION Fluidized bed reactor Two-stage reduction
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.51