检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]College of Chemistry and Environmental Science, Hebei University
出 处:《Journal of Rare Earths》2015年第4期350-354,共5页稀土学报(英文版)
基 金:Project supported by the National Natural Science Foundation of China(21301046)
摘 要:A new white luminescent material Dy3+ doped ZnWO4 was synthesized by hydrothermal route followed by calcining proc- ess. The phase structure, morphology and luminescent properties of as-synthesized samples were characterized by X-ray diffraction, scanning electron microscopy and fluorescence spectrophotometry, respectively. The results indicated that the sample was pure ZnWO4:Dy3+ only when the pH value of the reaction system was 6. The ZnWOa:Dy3+ sample was composed of spherical particles, and the particle size was about 80-130 nm. The excitation spectrum consisted of a broad band ascribed to the charge transfer transi- tion from oxygen ligand to tungsten ion. The emission spectrum of ZnWO4:Dy3+ was composed of two major parts: the broad band attributing to the intrinsic emission of WO42- and the 4F9/2→6H15/2 transition of Dy3+, and the sharp emission peak corresponding to the 4F9/2→61-113/2 transition of Dy3+. The optimal emission intensity of the Zn1-xWOa:Dy3+x phosphors was realized when x= 1.5 mol. %. Moreover, all of the ZnI_xWOa:Dy3+ (x=0.5 mol.%, 1 mol.%, 1.5 mol.%, 2 mol.%) phosphors could exhibit white light emission, which could be potentially applied in white lighting-emitting diodes.A new white luminescent material Dy3+ doped ZnWO4 was synthesized by hydrothermal route followed by calcining proc- ess. The phase structure, morphology and luminescent properties of as-synthesized samples were characterized by X-ray diffraction, scanning electron microscopy and fluorescence spectrophotometry, respectively. The results indicated that the sample was pure ZnWO4:Dy3+ only when the pH value of the reaction system was 6. The ZnWOa:Dy3+ sample was composed of spherical particles, and the particle size was about 80-130 nm. The excitation spectrum consisted of a broad band ascribed to the charge transfer transi- tion from oxygen ligand to tungsten ion. The emission spectrum of ZnWO4:Dy3+ was composed of two major parts: the broad band attributing to the intrinsic emission of WO42- and the 4F9/2→6H15/2 transition of Dy3+, and the sharp emission peak corresponding to the 4F9/2→61-113/2 transition of Dy3+. The optimal emission intensity of the Zn1-xWOa:Dy3+x phosphors was realized when x= 1.5 mol. %. Moreover, all of the ZnI_xWOa:Dy3+ (x=0.5 mol.%, 1 mol.%, 1.5 mol.%, 2 mol.%) phosphors could exhibit white light emission, which could be potentially applied in white lighting-emitting diodes.
关 键 词:white-emitting ZnWO4:Dy3+ PHOSPHOR LUMINESCENCE rare earths
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147