GPS大数据库分区访问特征分割算法  

GPS Big Database Partition Access Feature Segmentation Algorithm

在线阅读下载全文

作  者:罗莉[1] 

机构地区:[1]四川交通职业技术学院,成都611130

出  处:《科技通报》2015年第4期103-105,共3页Bulletin of Science and Technology

摘  要:研究GPS全球定位系统大数据库的分区方位特征分割问题,提高GPS大数据访问的抗干扰能力。传统方法采用基于块匹配的GPS大数据定位信号调度方法实现数据访问,在弱信号强干扰环境下干扰抑制能力差,算法稳健性不好。为解决这一问题,提出一种基于模式匹配的GPS大数据库分区访问特征分割算法,构建GPS大数据库数据访问模型,数据块按可靠性需求划分为若干个等级,得到储节点模块匹配模型,设计GPS大数据信息流集合划分机制,对流量信息占用概率进行特征匹配,实现GPS大数据库分区访问特征分割,通过计算数据访问的精确度和抗干扰能力等指标进行性能测试分析,仿真结果表明,采用该算法能较好地反映GPS大数据信息流的分区特征,特征分割效果较好,数据访问中抗干扰能力强,实时性好,GPS大数据定位信息访问精度较高,具有优越性。Partition range characteristic of large database of global positioning system GPS segmentation problem is researched, and GPS data access anti-interference ability is improved. The traditional method uses GPS data location signal scheduling block matching method based on data access, a weak signal in the strong interference environment interference suppression ability is poor, algorithm robustness is not good. In order to solve this problem, A GPS database based on pattern matching partition access feature segmentation algorithm is proposed, constructing GPS database data access model,data block according to the reliability requirement is divided into several grades, the node module matching model is obtained, GPS large data set partitioning mechanism of information flow is designed, flow information occupation probability feature matching, GPS database partition access feature segmentation is completed, performance testing is test by simulation, the simulation results show that, the algorithm can reflect the GPS data stream features, it has better segmentation results, it has strong capacity of resisting disturbance in data access, it has real-time performance, GPS positioning information access data has high precision, it shows the superiority in application.

关 键 词:GPS全球定位 大数据 分区访问 特征分割 

分 类 号:TN911.7[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象