乳腺MRI图像肿块分割的分段比较与方法研究  被引量:2

The Segmentation Research of Breast MRI Masses

在线阅读下载全文

作  者:叶希鹏 徐伟栋[1] 杨勇[1] 厉力华[1] 杨小丹[1] 张娟[2] 

机构地区:[1]杭州电子科技大学生命信息与仪器工程学院,杭州310018 [2]浙江省肿瘤医院放射科,杭州310022

出  处:《传感技术学报》2015年第3期387-395,共9页Chinese Journal of Sensors and Actuators

基  金:国家自然科学基金项目(60705016;61001215;61205200);浙江省自然科学基金项目(LY12F03003)

摘  要:计算机辅助诊断通过对乳腺磁共振成像(MRI)中肿块区域的自动分割和测量为医生提供定量的诊断依据。对分割过程中不同阶段的多种算法进行实验对比,以此探索更具稳定性和准确性的分割方案:空间模糊C均值(s FCM)聚类算法在肿块的初始定位中具有抗噪声能力和稳定性强的优点,而GVF snake模型在精细分割中对局部轮廓具有较好的收敛性;结合两种算法,并运用MRI序列帧间灰度分布相似、肿块位置/形状相近的原理,最终提高整个序列的分割精度与稳定性。CAD( computer-aided diagnosis) could be applied to assist the doctors in the diagnosis of breast cancer, by providing quantitative parameters of breast tumors with the automatic segmentation and measurements of the tumor regions in breast MRI( magnetic resonance imaging) slices. In order to find out a stable and accurate segmen-tation scheme,a variety of segmentation algorithm of different stages had been carried upon the contrast experiments. sFCM( spatial Fuzzy c-means clustering algorithm) was applied to locate the tumor roughly for its high denosing abil-ity and stability. And then GVF snake model was utilized to segment the tumor accurately for its high convergence of local boundary. Finally,relevant theory of inter-frame images was used to improve the segmentation accuracy of the whole MRI sequence,since the gray distribution and the positions of the tumors are always very similar in the adja-cent slices.

关 键 词:医学图像处理 乳腺肿块分割 帧间相关性 核磁共振成像 模糊C均值 SNAKE模型 

分 类 号:R391.4[医药卫生—基础医学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象