Finite Element Modeling of Cutaneous Electrical Stimulation for Sensory Feedback  

Finite Element Modeling of Cutaneous Electrical Stimulation for Sensory Feedback

在线阅读下载全文

作  者:LI Si CHAI Guo-hong SUI Xiao-hong LAN Ning 

机构地区:[1]Institute of Rehabilitation Engineering, the Med-X Research Institute,Shanghai Jiao Tong University

出  处:《Chinese Journal of Biomedical Engineering(English Edition)》2014年第4期146-152,共7页中国生物医学工程学报(英文版)

基  金:National Basic Research Program of China;grant number:2011CB013304

摘  要:It is currently difficult for the amputee to perceive environmental information such as tactile pressure on the fingertip of the present upper limb prostheses.Sensory feedback induced by cutaneous electrical stimulation can be used to transmit tactile information from hand prostheses to sensory nerve of intact upper arm, thus producing the corresponding perceptions in human brain. In order to have a deeper understanding on the distribution of stimulation current within the limb, and find a better placement of the stimulating and reference electrodes, we constructed a three-dimensional upper-limb model to systematically study the effect of electrode placement on current distribution based on finite element analysis. In these simulations, the reference electrode is positioned at four different locations around and on the axial direction of the arm. The results show that with the increase of distance between reference electrode and stimulating electrode, the current density increases in the skin layer of the upper limb.When the reference electrode is on the opposite side of stimulating electrode around the arm, the current is more concentrated in the skin layer, which is in line with recent findings in psychophysiological experiments. But better spatial selectivity could be achieved when the reference electrode is closer to the stimulating electrode around the arm, and it is more obvious in comparison with that on the axial direction. These findings will provide insights for the design of electrode array used for evoking cutaneous sensory afferents.It is currently difficult for the amputee to perceive environmental information such as tactile pressure on the fingertip of the present upper limb prostheses. Sensory feedback induced by cutaneous electrical stimulation can be used to transmit tactile information from hand prostheses to sensory nerve of intact upper arm, thus producing the corresponding perceptions in human brain. In order to have a deeper understanding on the distribution of stimulation current within the limb, and find a better placement of the stimulating and reference electrodes, we constructed a three-dimensional upper-limb model to systematically study the effect of electrode placement on current distribution based on finite element analysis. In these simulations, the reference electrode is positioned at four different locations around and on the axial direction of the arm. The results show that with the increase of distance between reference electrode and stimulating electrode, the current density increases in the skin layer of the upper limb. When the reference electrode is on the opposite side of stimulating electrode around the arm, the current is more concentrated in the skin layer, which is in line with recent findings in psychophysiological experiments. But better spatial selectivity could be achieved when the reference electrode is closer to the stimulating electrode around the arm, and it is more obvious in comparison with that on the axial direction. These findings will provide insights for the design of electrode array used for evoking cutaneous sensory afferents.

关 键 词:AMPUTEE sensory feedback cutaneous stimulation referenceelectrode stimulating electrode current distribution 

分 类 号:TP391.72[自动化与计算机技术—计算机应用技术] Q426[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象