基于压缩感知的特高压输电塔实时监测系统数据传输方法研究  被引量:3

Study on the data transmission of the ultra-high voltage transmission tower monitoring system based on compressed sensing

在线阅读下载全文

作  者:胡顺仁[1,2] 王元[1] 梁快[1] 包明[1] 

机构地区:[1]重庆理工大学电子信息与自动化学院,重庆400054 [2]重庆大学光电技术及系统教育部重点实验室,重庆400044

出  处:《电测与仪表》2015年第7期81-85,共5页Electrical Measurement & Instrumentation

基  金:国家科技部项目(NO.2006AA04Z433);重庆市科技攻关重大专项(NO.7289);重庆市自然科学基金资助项目(cstc2011jj A40023);重庆市教育委员会科学技术研究项目(NO.KJ080616)

摘  要:特高压输电塔形成的强电磁场干扰及所处的野外恶劣自然环境严重影响无线传感器网络的数据传输质量,造成了无线传感网络通信数据溢出、误码率增加等问题,文章以基于无线传感器网络构建的特高压输电塔实时监测系统为基础,对无线传感器网络在强电磁环境下的通信特性进行了研究,提出了一种基于压缩感知理论的低信噪比信道编码传输方法(LSCC),该方法对测量矩阵进行了改进,并在信道删除概率的基础上自适应调整信息发送的比特量,减少重构所需测量值个数。实验验证表明,低信噪比信道编码传输方法降低了特高压输电塔强电磁场引起的信道干扰带来的数据溢出率11.29%,有效地增强了输电塔监测系统的实际应用性能。Strong electromagnetic interference formed by UHV transmission towers and harsh natural environment seri- ously affect the quality of data transmission in the field of wireless sensor networks, result the issues that communica- tion data overflow in a wireless sensor network and error rate increases, and so on. Making UHV transmission tower real-time monitoring system which is based on wireless sensor networks as a basis, this paper researched communica- tion characteristics under ( LSCC), which is based strong electromagnetic environments, proposed low SNR channel coding transmission method on the theory of compressed sensing, while this method improved the measurement matrix, at the same time, :it can adjust bit amount of information adaptively, based on channel deleted probability to reduce the required number of measurement values for reconstruction. Experiments indicate that low SNR channel coding method reduces a data overflow rate 11.29% caused by channel interference brought by the transmission UHV trans- mission tower strong electromagnetic field, effectively enhancing the actual application performance of transmission towers monitoring system.

关 键 词:特高压输电塔 无线传感网络 压缩感知 可靠性 

分 类 号:TM934[电气工程—电力电子与电力传动]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象