UKF参数估计在三体Lambert问题中的应用  被引量:3

Application of UKF parameter estimation in the three-body Lambert problem

在线阅读下载全文

作  者:张洪礼[1] 罗钦钦 韩潮[1] 

机构地区:[1]北京航空航天大学宇航学院,北京100191 [2]北京空天技术研究所,北京100074

出  处:《北京航空航天大学学报》2015年第2期228-233,共6页Journal of Beijing University of Aeronautics and Astronautics

基  金:载人航天预研资助项目(010103)

摘  要:为了快速精确地求解三体Lambert问题,提出了一种新的基于无损卡尔曼滤波(UKF)参数估计的数值求解算法,该算法由初值猜测和精确解求解两部分组成.首先,基于地月系统二体模型,通过简单迭代求解三体Lambert问题的初值.然后,将三体Lambert问题对应的两点边值问题转化为参数估计问题,通过UKF滤波算法求解,可得到收敛的精确解.该算法是基于概率估计理论的,不仅避免了传统数值方法推导相关梯度矩阵的复杂性,而且降低了三体Lambert问题对初值精确度的要求,从而显著降低了三体Lambert问题求解的难度.数值仿真表明,该方法求解效率较高,具有良好的鲁棒性,与微分修正算法、二阶微分修正算法对比具有更大的收敛域.A new algorithm based on unscented Kalman filter( UKF) parameter estimation was proposed for the fast and efficient solution of the three-body Lambert problem. The algorithm was divided into two steps,guessing the initial solution and searching the exact solution. The initial solution of the three-body Lambert problem was generated using the two-body model of the Earth-Moon system. Then the two-point boundary value problem corresponding to the original three-body Lambert problem was converted to a parameter estimation problem. Through solving the converted problem using UKF,the converged exact solution was found. The algorithm was based on the theory of probability,so the derivation of the gradient matrixes required by traditional numerical methods was omitted. Moreover,the demand for the accuracy of the initial solutions for the three-body Lambert problem was modified. Therefore,the difficulty of solving the three-body Lambert problem was greatly reduced. Numerical examples indicate that the algorithm is of high efficiency and robustness and obtains a larger convergence domain compared with the differential-correction method and the second order differential-correction method.

关 键 词:三体系统 Lambert问题 两点边值问题 无损卡尔曼滤波 参数估计 

分 类 号:V412.4[航空宇航科学与技术—航空宇航推进理论与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象