用于光纤围栏入侵告警的频谱分析快速模式识别  被引量:32

Fast Pattern Recognition Based on Frequency Spectrum Analysis Used for Intrusion Alarming in Optical Fiber Fence

在线阅读下载全文

作  者:王照勇[1,2] 潘政清[1] 叶青[1] 蔡海文[1] 瞿荣辉[1] 方祖捷[1] 

机构地区:[1]中国科学院上海光学精密机械研究所,上海201800 [2]中国科学院大学,北京100049

出  处:《中国激光》2015年第4期159-164,共6页Chinese Journal of Lasers

基  金:国家自然科学基金(61475165;61405227);国家863计划(2012AA041203);上海市优秀技术带头人(13XD1425400)

摘  要:相位敏感光时域反射计(Ф-OTDR)在光纤围栏等动态传感领域具有重要的应用,快速、有效地对入侵信号分类识别有着十分重要的意义。基于频谱分析提出了一种称为频谱欧氏距离法(EDFS)的快速模式识别方法。该方法通过短时平移差分和短时能量法对Ф-OTDR的解调信号进行提取,确定待分析数据段;对数据段进行归一化和快速傅里叶变换,获得信号的频谱特征;计算信号频谱与预先生成的模板之间的欧氏距离对入侵信号进行分类、识别。采用三种入侵信号对该方法的有效性和实时性进行了实验验证。结果表明,该模式识别方法可以有效识别扰动信号,识别时间小于传统的动态时域规划模式识别方法耗时的1/10。同时,该方法所需训练样本较少,对环境噪声有一定程度的抑制作用。Phase sensitive optical time domain reflectometer (φ-OTDR) becomes more and more important in intrusion alarming and other dynamic sensing fields. Meanwhile, it makes much sense to classify the intrusion fast and effectively. Therefore, a fast pattern recognition method based on frequency spectrum is presented and experimentally verified. The proposed method is named EDFS, short for Euclidean distance of fast Fourier transform (FFT) frequency spectrum of the detected signals. The signal is abstracted by short-time shifted delta(SSD)and short-time energy, and the features are obtained from the abstracted signal after normalization and FFT transformation. The euclidean distance of the spectra between features and models is used to classify the intrusion. The effectivity and instantaneity are verified by three typical intrusion disturbances. It is shown experimentally that intrusions can be recognized clearly in a period less than one tenth of that by conventional dynamic time warping (DTW). The method needs fewer training models than other recognition methods, such as the neural network, and has a merit of mitigating influence of environmental noises.

关 键 词:传感器 模式识别与特征提取 傅里叶变换 相位敏感光时域反射计 

分 类 号:TN212.14[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象