Dielectric behaviors at microwave frequencies and Mossbauer effects of chalcedony, agate, and zultanite  

在线阅读下载全文

作  者:Levent Paral? Israfil Sabikoglu Jiri Tucek Jiri Pechousek Petr Novak Jakub Navarik 

机构地区:[1]Celal Bayar University, Departments of Electronics and Automation [2]Celal Bayar University, Faculty of Arts and Sciences, Department of Physics Muradiye [3]Regional Centre of Advanced Technologies and Materials, Department of Experimental Physics, Faculty of Science,Palacky University

出  处:《Chinese Physics B》2015年第5期649-655,共7页中国物理B(英文版)

基  金:supported by the Project LO1305 and Operational Program Education for Competitiveness-European Social Fund of the Ministry of Education,Youth and Sports of the Czech Republic(Grant No.CZ.1.07/2.3.00/20.0155);the Internal Student Grant IGA of Palacky University in Olomouc,Czech Republic(Grant No.IGA PrF 2014017)

摘  要:In this study, dielectric properties within 8-12 GHz microwave frequencies, inductively coupled plasma-atomic emis- sion spectrometry, Fourier transform infrared spectrometry, synchronized two thermal analyses, and 57Fe Mossbauer spectroscopy analysis of chalcedony, agate, and zultanite samples from Turkey are presented. Agate and chalcedony show the same nine vibrational absorption peaks obtained unlike zultanite from FTIR spectra in the 350 cm-1 to 4000 cm-1 range, ε' values of chalcedony, agate and zultanite derived at 10.5 GHz were 4.67, 4.41, and 7.34, respectively, eI and e~ values of the studied samples at the microwave frequencies are related to the percentage weight of their constituent parts in their chemical compositions. 57Fe Mossbauer spectroscopy results confirm the existence of iron-containing islands in the crystal structure of zultanite, agate, and chalcedony samples, equipped them with magnetic features typical for magnetic nanoparticles including superparamagnetism. The presence of iron-containing islands significantly affects the magnetic, dielectric, and optical properties of studied samples that are not observed for pure minerals without any foreign inclusions.In this study, dielectric properties within 8-12 GHz microwave frequencies, inductively coupled plasma-atomic emis- sion spectrometry, Fourier transform infrared spectrometry, synchronized two thermal analyses, and 57Fe Mossbauer spectroscopy analysis of chalcedony, agate, and zultanite samples from Turkey are presented. Agate and chalcedony show the same nine vibrational absorption peaks obtained unlike zultanite from FTIR spectra in the 350 cm-1 to 4000 cm-1 range, ε' values of chalcedony, agate and zultanite derived at 10.5 GHz were 4.67, 4.41, and 7.34, respectively, eI and e~ values of the studied samples at the microwave frequencies are related to the percentage weight of their constituent parts in their chemical compositions. 57Fe Mossbauer spectroscopy results confirm the existence of iron-containing islands in the crystal structure of zultanite, agate, and chalcedony samples, equipped them with magnetic features typical for magnetic nanoparticles including superparamagnetism. The presence of iron-containing islands significantly affects the magnetic, dielectric, and optical properties of studied samples that are not observed for pure minerals without any foreign inclusions.

关 键 词:zultanite agate chalcedony microwave dielectric properties Mossbauer effects 

分 类 号:O481[理学—固体物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象