Effects of Joining Conditions on Microstructure and Mechanical Properties of C_f/Al Composites and TiAl Alloy Combustion Synthesis Joints  

Effects of Joining Conditions on Microstructure and Mechanical Properties of C_f/Al Composites and TiAl Alloy Combustion Synthesis Joints

在线阅读下载全文

作  者:Guang-Jie Feng Zhuo-Ran Li Rui-Hua Liu Shi-Cheng Feng 

机构地区:[1]State Key Laboratory of Advanced Welding and Joining,Harbin Institute of Technology

出  处:《Acta Metallurgica Sinica(English Letters)》2015年第4期405-413,共9页金属学报(英文版)

基  金:financially supported by the National Natural Science Foundation of China (No.51075101)

摘  要:Cf/Al composites and TiAl alloy were joined by combustion synthesis in different joining conditions. Effects of additive Cu, joining temperature and holding time on joint microstructure and shear strength were characterized by employing DTA, SEM, EDS, XRD and shear test. Results show that the additive Cu in the Ti-Al-C interlayer could significantly decrease the reaction temperature owing to the emergence of Al--Cu eutectic liquid. Reaction degree of the interlayer was influenced by joining temperature and holding time. Due to the barrier action of formed TiAl3 layer, reaction rate of Ti and Al was determined by the atoms diffusion. The reaction between Ti and AI was more sensitive to the joining temperature rather the holding time. The joints shear strength was influenced by joining condition directly. The maximum shear strength of CS joints was 25.89 MPa at 600 ℃ for 30 rain under 5 MPa. Interface evolution mechanism of the CS joint was analyzed based on the experimental results and phase diagram.Cf/Al composites and TiAl alloy were joined by combustion synthesis in different joining conditions. Effects of additive Cu, joining temperature and holding time on joint microstructure and shear strength were characterized by employing DTA, SEM, EDS, XRD and shear test. Results show that the additive Cu in the Ti-Al-C interlayer could significantly decrease the reaction temperature owing to the emergence of Al--Cu eutectic liquid. Reaction degree of the interlayer was influenced by joining temperature and holding time. Due to the barrier action of formed TiAl3 layer, reaction rate of Ti and Al was determined by the atoms diffusion. The reaction between Ti and AI was more sensitive to the joining temperature rather the holding time. The joints shear strength was influenced by joining condition directly. The maximum shear strength of CS joints was 25.89 MPa at 600 ℃ for 30 rain under 5 MPa. Interface evolution mechanism of the CS joint was analyzed based on the experimental results and phase diagram.

关 键 词:C/Al composite TiAl alloy Combustion synthesis Interface microstructure Formationmechanism 

分 类 号:TB333[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象