机构地区:[1]Shaanxi University of Science and Technology [2]Shaanxi Research Institute of Agricultural Products Processing Technology [3]School of Material Science & Engineering,Jiangsu University of Science and Technology
出 处:《Chinese Journal of Polymer Science》2015年第6期823-829,共7页高分子科学(英文版)
基 金:financially supported by the National Natural Science Foundation of China(Nos.21204045 and 21276151);Key Scientific Research Group of Shanxi Province(No.2013KCT-08);Scientific Research Group of Shanxi University of Science and Technology(No.TD12-04)
摘 要:The effects of PEA on the )γ-phase PVDF crystal structure and the crystallization of PEA within the pre-existing γ-phase PVDF spherulites have been investigated by optical microscopy (OM), infrared spectroscopy (IR) and scanning electron microscopy (SEM). The results demonstrate that the γ-phase PVDF spherulites consist of the lamellae exhibiting a highly curved scroll-like morphology and develop preferentially in PEA-rich blend. With increasing PEA concentration, the scroll diameter increases and the scrolls are better separated from each other. PEA crystallizes first in the interspherulitic region and transcrystalline layer develops. Subsequently, the transcrystalline layer of PEA continues to grow within theγ-phase PVDF spherulites, e.g., in the region between the scrolls, until impinging on other PEA transcrystalline layers or spherulites. The crystallization kinetics results indicate that the growth rate of PEA crystals in the intraspherulitic region of γ-phase PVDF shows a positive correlation with content of PEA, but a negative one with the crystallization temperature of γ-phase PVDF.The effects of PEA on the )γ-phase PVDF crystal structure and the crystallization of PEA within the pre-existing γ-phase PVDF spherulites have been investigated by optical microscopy (OM), infrared spectroscopy (IR) and scanning electron microscopy (SEM). The results demonstrate that the γ-phase PVDF spherulites consist of the lamellae exhibiting a highly curved scroll-like morphology and develop preferentially in PEA-rich blend. With increasing PEA concentration, the scroll diameter increases and the scrolls are better separated from each other. PEA crystallizes first in the interspherulitic region and transcrystalline layer develops. Subsequently, the transcrystalline layer of PEA continues to grow within theγ-phase PVDF spherulites, e.g., in the region between the scrolls, until impinging on other PEA transcrystalline layers or spherulites. The crystallization kinetics results indicate that the growth rate of PEA crystals in the intraspherulitic region of γ-phase PVDF shows a positive correlation with content of PEA, but a negative one with the crystallization temperature of γ-phase PVDF.
关 键 词:CRYSTALLIZATION BLENDS Poly(vinylidene fluoride) Poly(ethylene adipate).
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...