可时间局部性感知的块I/O关联挖掘算法  被引量:2

Temporal Locality Aware Mining Algorithm for Correlated Block I / O

在线阅读下载全文

作  者:黄立锋[1] 邓玉辉[1,2] 

机构地区:[1]暨南大学科学技术信息学院计算机科学系,广州510632 [2]中国科学院计算技术研究所计算机体系结构国家重点实验室,北京100190

出  处:《小型微型计算机系统》2015年第5期990-995,共6页Journal of Chinese Computer Systems

基  金:国家自然科学基金项目(61272073;61073064)资助;广东省自然科学基金重点项目(S2013020012865)资助;广东省教育厅科技创新项目(2012KJCX0013)资助;中科院计算机体系结构国家重点实验室开放课题项目资助

摘  要:块I/O之间的频繁关联性是存储系统中普遍存在的现象.这种数据块之间的频繁关联性,在改善存储系统的数据布局、优化访问数据的预取策略等方面具有重要意义.传统的频繁关联序列挖掘算法没有考虑数据的时间局部性,不能够有效地挖掘出块I/O之间的频繁关联性.本文提出了一种关联强化窗口下的可时间局部感知的apriori改进算法来挖掘块I/O之间的频繁关联序列.此外,本文还对支持度达不到阈值却又不容忽视的次频繁关联序列进行了挖掘,与频繁序列形成优势互补.实验中利用了三个真实的Trace对该算法进行评估.实验结果表明改进后的apriori算法更适合于挖掘块I/O数据流的频繁和次频繁关联序列.而且,该算法弥补了传统的频繁关联序列挖掘算法对具有时间敏感性的类流数据进行关联挖掘的缺陷.另外,相比较于apriori算法,该算法的时间效率更高.The frequent correlations between I/O blocks are a common phenomenon in storage systems. These correlations play a significant role in improving data layout, optimizing prefetching and so on. The traditional mining algorithms of frequent correlation sequence do not consider the impact of temporal locality. Therefore, they cannot mine I/O block frequent correlations effectively. In this paper, we propose an improved apriori algorithm based on a strengthen correlation window that is temporal locality aware. In addition, this paper mines the secondary frequent correlation sequence whose support value does not meet the minimum threshold but it is complementary with the frequent correlation sequence. We have evaluated the improved algorithm by using three real traces. Our experimental results show that the proposed algorithm is more applicable to mine the frequent and secondary frequent correlation sequence of I/O block data streams. Moreover,the improved algorithm has the advantage of mining the similar data stream which is time-sensitive in contrast to the traditional mining algorithms. More significantly, the improved algorithm performs more effectively with less time overhead than that of traditional apriori algorithm.

关 键 词:关联强化窗口 块I/O关联 频繁关联序列 次频繁关联序列 类流数据 

分 类 号:TP311[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象